seq_len = 64 hidden_size = 384 dataset,n_embeddings,n_notes,n_durations,n_offsets = load_dataset(seq_len,batch_size=128)
时间: 2024-03-26 16:37:52 浏览: 104
在这段代码中,seq_len表示生成器模型中,输入序列的长度,即SEQ_LENGTH。hidden_size表示生成器模型中,LSTM模型的隐藏层大小。dataset是使用load_dataset()函数加载的数据集,其中包含了用于训练和验证生成器模型的音符和节奏序列数据。n_embeddings、n_notes、n_durations和n_offsets分别表示数据集中不同元素的个数,即嵌入向量的维度、音符类型的个数、节奏类型的个数和偏移量的个数。在load_dataset()函数中,这些参数被用于对数据集进行预处理和划分,以便用于模型的训练和验证。
相关问题
model = build_lstm_generator(seq_len=seq_len, hidden_size=hidden_size,vocab_size=len(offsets_vocab)+len(durations_vocab)*len(notes_vocab)) TypeError: build_lstm_generator() got an unexpected keyword argument 'seq_len'
这个错误通常是由于函数 `build_lstm_generator` 的参数列表中没有 `seq_len` 这个参数,但是你尝试在调用该函数时使用了这个参数。
具体来说,可能是以下原因之一:
1. 函数 `build_lstm_generator` 的参数列表中确实没有 `seq_len` 这个参数。请检查函数定义,并确保你调用该函数时使用了正确的参数名称和值。
2. 函数 `build_lstm_generator` 的参数列表中确实有 `seq_len` 这个参数,但是你没有正确地传递该参数。请检查你的代码,并确保你传递了正确的参数名称和值。
3. 可能是函数 `build_lstm_generator` 的参数列表中有一个名为 `seq_len` 的参数,但是该参数是一个可选参数,而你使用了错误的函数调用方式。请检查你的代码,并根据函数定义使用正确的函数调用方式。
请仔细检查你的代码,并确保使用了正确的参数名称和值。如果问题仍然存在,请提供更多的代码和上下文信息以供更进一步的帮助。
def load_dataset(seq_len,batch_size=32): note_arr = np.load("notes_array.npy") _n_notes, _n_durations = note_arr.shape[1:] offset_arr = np.load("offsets_array.npy") _n_offsets = offset_arr.shape[1] note_arr = np.reshape(note_arr, (note_arr.shape[0], -1)) note_data = np.concatenate([note_arr, offset_arr], axis=-1) _n_embeddings = note_data.shape[-1]
这段代码定义了一个名为load_dataset()的函数,用来加载音符和节奏序列数据集。它首先从文件中加载note_arr、offset_arr数组,这两个数组分别表示音符和节奏序列的二维矩阵形式。然后,通过np.concatenate()函数将这两个数组按列合并成一个新的数组note_data,其中每个元素都表示一个音符或节奏的特征向量。接着,通过np.reshape()函数将note_arr数组转换成二维矩阵形式,方便后续处理。最后,该函数返回了经过预处理和划分后的数据集dataset,以及音符、节奏和偏移量的个数n_notes、n_durations和n_offsets,以及嵌入向量的维度n_embeddings。
阅读全文