train_dataset, seq_len, n_features = create_dataset(train_data) val_dataset, _, _ = create_dataset(val_data)
时间: 2024-01-24 11:04:19 浏览: 105
train set-数据集
这段代码中,`create_dataset(train_data)`函数返回了三个值,分别为`train_dataset`、`seq_len`和`n_features`。同样,`create_dataset(val_data)`函数也返回了三个值,但在这里我们只需要前两个值,因此使用`_`来占位,表示我们不需要这个值。
具体来说,这段代码的作用如下:
1. 调用`create_dataset(train_data)`函数,将`train_data`作为参数传入,得到三个返回值,分别为`train_dataset`、`seq_len`和`n_features`。
2. 将`train_dataset`赋值给变量`train_dataset`,`seq_len`赋值给变量`seq_len`,`n_features`赋值给变量`n_features`。
3. 调用`create_dataset(val_data)`函数,将`val_data`作为参数传入,得到三个返回值,分别为`val_dataset`、`_`和`_`。
4. 将`val_dataset`赋值给变量`val_dataset`。
总的来说,这段代码的目的是将训练集和验证集都转换为可以用于训练模型的数据集,其中`create_dataset()`函数的具体实现需要根据具体的场景来确定。同时,`seq_len`和`n_features`也是在数据集转换过程中确定的,分别表示序列的长度和每个时间步的特征数,可以用于定义模型的输入形状。
阅读全文