请用python写出cnn-attention模型的示例代码
时间: 2023-09-27 20:11:55 浏览: 74
以下是一个简单的CNN-Attention模型的示例代码,用于文本分类任务:
```python
import tensorflow as tf
class CNNAttention(tf.keras.Model):
def __init__(self, num_classes, embedding_dim, filter_sizes, num_filters, dropout_rate):
super(CNNAttention, self).__init__()
self.embedding = tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=embedding_dim)
self.conv_layers = []
for filter_size in filter_sizes:
conv = tf.keras.layers.Conv1D(filters=num_filters, kernel_size=filter_size, activation='relu')
self.conv_layers.append(conv)
self.attention = tf.keras.layers.Attention()
self.dropout = tf.keras.layers.Dropout(dropout_rate)
self.dense = tf.keras.layers.Dense(num_classes, activation='softmax')
def call(self, inputs):
x = self.embedding(inputs)
x = tf.transpose(x, perm=[0, 2, 1])
conv_outputs = []
for conv in self.conv_layers:
conv_output = conv(x)
pool_output = tf.keras.layers.GlobalMaxPooling1D()(conv_output)
conv_outputs.append(pool_output)
attention_output = self.attention(conv_outputs)
x = self.dropout(attention_output)
x = self.dense(x)
return x
```
这个模型包含了一个嵌入层、多个卷积层、注意力层、dropout层和全连接层。在 `call` 方法中,我们首先将输入的序列进行嵌入,然后对每个卷积层进行卷积操作并利用全局最大池化层提取特征,最后将多个卷积层的特征输入到注意力层中进行加权融合,再经过dropout和全连接层得到最终的分类结果。
阅读全文