基于svm的抠图给出代码
时间: 2023-11-24 12:05:20 浏览: 73
以下是基于SVM的图像分割/抠图的示例代码,使用Python和scikit-learn库:
```python
from sklearn import svm
import numpy as np
import cv2
# 读取图像
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 提取特征
X = np.reshape(gray,(-1,1))
# 创建标签,手动标注前景和背景
Y = np.zeros((gray.shape[0]*gray.shape[1],))
Y[20000:22000] = 1
Y[30000:35000] = 1
# 训练svm分类器
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X,Y)
# 预测所有像素的标签并重塑为原图像大小
result = clf.predict(np.reshape(gray,(-1,1)))
result = np.reshape(result,gray.shape)
# 将前景提取出来
mask = np.zeros_like(result)
mask[result==1] = 255
# 保存结果
cv2.imwrite('mask.jpg',mask)
```
这段代码中,首先读取了一张图像并转换为灰度图像。然后,将灰度图像的像素值作为特征,手动标注一些前景和背景的像素,并将标签作为训练数据。接着,使用SVM分类器训练这些数据。最后,对整张图像中的所有像素进行预测,得到每个像素的标签,将前景部分提取出来并保存为一张掩膜图像。
这只是一个简单的示例,实际应用中,需要根据具体情况选择不同的特征和算法,并对模型进行调参优化,以达到更好的效果。
阅读全文
相关推荐
















