HRNet姿态估计网络在mpii 数据集上测试结果pred .mat 如何可视化到图片上
时间: 2024-03-23 11:36:38 浏览: 235
要将HRNet姿态估计网络在MPII数据集上测试结果(pred.mat)可视化到图片上,您可以按照以下步骤进行操作:
1. 首先,您需要将MPII数据集中的图像和对应的标注文件加载到您的代码中。您可以使用Python中的OpenCV库来读取图像,使用SciPy库的loadmat函数来读取.mat文件。
2. 接下来,您需要将预测结果(pred.mat)加载到您的代码中。
3. 对于每张图像,您需要使用预测结果中的关节点坐标来绘制人体姿态关键点。您可以使用Python中的Matplotlib库来绘制图像和关键点。
4. 最后,您可以将绘制好的图像保存到本地或显示在屏幕上。
以下是可能的Python代码示例:
```python
import cv2
from scipy.io import loadmat
import matplotlib.pyplot as plt
# 加载MPII数据集中的图像和标注文件
img = cv2.imread('path/to/image.jpg')
anno = loadmat('path/to/annotation.mat')
# 加载预测结果
pred = loadmat('path/to/prediction.mat')
# 获取关节点坐标
keypoints = pred['pred']
# 绘制人体姿态关键点
for i in range(len(keypoints)):
x, y, visible = keypoints[i]
if visible:
cv2.circle(img, (int(x), int(y)), 3, (0, 255, 0), -1)
# 显示结果
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
```
这段代码将预测结果中的关节点坐标绘制到MPII数据集中的图像上,并使用Matplotlib库显示结果。您可以根据需要进行修改和扩展。
阅读全文