Eigen::MatrixXd transform_matrix_ = project_matrix * R_rect * RT_velo_to_cam;
时间: 2023-09-13 19:03:24 浏览: 95
这是一个三维点在相机图像坐标系下的投影矩阵计算,其中project_matrix是相机内参矩阵,R_rect是相机坐标系到图像坐标系的投影矩阵,RT_velo_to_cam是点从车辆坐标系变换到相机坐标系的变换矩阵。通过将三个矩阵相乘,得到的是将点从车辆坐标系变换到相机图像坐标系下的变换矩阵。最终可以通过该矩阵将三维点映射到二维图像上进行显示。
相关问题
for (const auto &det : Z) { Eigen::VectorXd a = x_ + K * (det - z_pre_); x_filter = x_filter + beta(i) * a; ++i; } x_filter = last_beta * x_ + x_filter; Eigen::MatrixXd P_temp = Eigen::MatrixXd(n_x_, n_x_); P_temp.fill(0.); for (int i = 0; i < Z.size() + 1; ++i) { Eigen::VectorXd a = Eigen::VectorXd(n_x_); a.setZero(); if (i == Z.size()) { a = x_; } else { a = x_ + K * (Z.at(i) - z_pre_); } P_temp = P_temp + beta(i) * (a * a.transpose() - x_filter * x_filter.transpose()); } x_ = x_filter; P_ -= (1 - last_beta) * K * S_ * K.transpose(); P_ += P_temp;
这段代码是一个卡尔曼滤波器的更新过程,其中更新了卡尔曼滤波器的状态向量x_和协方差矩阵P_。具体的更新过程如下:
1. 对于Z中的每个观测值det,计算卡尔曼增益K和状态向量a,然后更新x_filter(滤波后的状态向量)。
2. 计算P_temp(一个临时的协方差矩阵),其中beta是一个权重向量,用于加权每个状态向量的影响。对于每个状态向量a,计算出其对应的协方差矩阵,然后使用beta权重加权求和,得到P_temp。
3. 根据最终的滤波后状态向量x_filter和上一时刻的状态向量x_,以及最后一个观测值对应的beta值last_beta,计算出最终的状态向量x_。
4. 根据卡尔曼增益K和残差协方差矩阵S_,更新协方差矩阵P_。
总的来说,这段代码是用于对一个向量序列进行卡尔曼滤波的,其中涉及到了矩阵和向量的计算。
Eigen::Vector3f tmp_t_verts = cam->m_exter_calib.topRightCorner(3, 1); Eigen::Matrix3f tmp_inv_r_mat= cam->m_exter_calib.topLeftCorner(3, 3).transpose(); Eigen::Vector3f tmp_root_point = -tmp_inv_r_mat * tmp_t_verts;
这段代码主要是对相机的外参数进行计算,具体分为三步:
1. 首先,从相机的外参数矩阵(3x4)中取出右上角的3x1矩阵,即相机的平移向量tmp_t_verts。
2. 然后,从相机的外参数矩阵中取出左上角的3x3矩阵,即相机的旋转矩阵,并对其进行转置操作,得到tmp_inv_r_mat。
3. 最后,通过公式 tmp_root_point = -tmp_inv_r_mat * tmp_t_verts 计算出相机坐标系下的原点在世界坐标系下的位置tmp_root_point。
也就是说,这段代码用于计算相机坐标系下的原点在世界坐标系下的位置,是相机标定和位姿估计等操作中常用的计算方法之一。
阅读全文