请帮我写段程序解决下面的问题dec3 = torch.cat((dec3, enc3), dim=1) #enc3的大小为281,而dec的大小为280 RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 280 but got size 281 for tensor number 1 in the list.
时间: 2024-02-25 21:55:01 浏览: 59
这个错误是因为在进行torch.cat操作时,要求除了拼接的维度以外,其他维度大小必须相同,但是你的enc3和dec3在除了第一个维度以外的其他维度大小不同,因此出现了这个错误。解决这个问题,你可以通过切片的方式调整enc3的大小,使其与dec3在其他维度上大小相同,具体代码如下:
```
enc3 = enc3[:, :280, :, :]
dec3 = torch.cat((dec3, enc3), dim=1)
```
这样就能保证enc3和dec3在除了第一个维度以外的其他维度大小相同了。
相关问题
enc3 = enc3[:, :280, :, :]dec3 = torch.cat((dec3, enc3), dim=1),这段程序没有解决后面的这个问题RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 280 but got size 281 for tensor number 1 in the list.还有别的方法吗
这个错误提示说明在维度1上期望的大小为280,但实际的大小为281,因此无法进行tensor的拼接操作。可能的原因是你的enc3和dec3的维度不匹配,或者在对enc3进行切片时出现了一些问题。
你可以尝试调整enc3的切片方式,让它的维度匹配你的dec3。比如可以通过如下代码将enc3的维度调整为(1, 280, H, W):
```
enc3 = enc3[:, :280, :, :]
enc3 = torch.unsqueeze(enc3, dim=0)
```
然后再进行拼接操作:
```
dec3 = torch.cat((dec3, enc3), dim=1)
```
如果还有问题,请提供更多的上下文信息,我会尽力帮助你解决问题。
用python和torch库实现Unet网络
好的,我可以为您提供一个简单的Unet网络的实现,以下是代码:
```python
import torch
import torch.nn as nn
# 定义编码器
class Encoder(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, batch_norm=True):
super().__init__()
if batch_norm:
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
else:
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.conv(x)
return x
# 定义解码器
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, batch_norm=True):
super().__init__()
if batch_norm:
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
else:
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.conv(x)
return x
# 定义UNet网络
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1):
super().__init__()
# 编码器部分
self.enc1 = Encoder(in_channels, 64, batch_norm=False)
self.pool1 = nn.MaxPool2d(2, 2)
self.enc2 = Encoder(64, 128)
self.pool2 = nn.MaxPool2d(2, 2)
self.enc3 = Encoder(128, 256)
self.pool3 = nn.MaxPool2d(2, 2)
self.enc4 = Encoder(256, 512)
self.pool4 = nn.MaxPool2d(2, 2)
# 解码器部分
self.dec4 = Decoder(512, 256)
self.up4 = nn.ConvTranspose2d(256, 256, 2, stride=2)
self.dec3 = Decoder(256 + 256, 128)
self.up3 = nn.ConvTranspose2d(128, 128, 2, stride=2)
self.dec2 = Decoder(128 + 128, 64)
self.up2 = nn.ConvTranspose2d(64, 64, 2, stride=2)
self.dec1 = Decoder(64 + 64, out_channels, batch_norm=False)
def forward(self, x):
# 编码器部分
enc1 = self.enc1(x)
enc2 = self.enc2(self.pool1(enc1))
enc3 = self.enc3(self.pool2(enc2))
enc4 = self.enc4(self.pool3(enc3))
# 解码器部分
dec4 = self.dec4(self.pool4(enc4))
up4 = self.up4(dec4)
dec3 = self.dec3(torch.cat([up4, enc3], dim=1))
up3 = self.up3(dec3)
dec2 = self.dec2(torch.cat([up3, enc2], dim=1))
up2 = self.up2(dec2)
dec1 = self.dec1(torch.cat([up2, enc1], dim=1))
return dec1
```
这个实现是一个简单的UNet网络,包括编码器和解码器部分,您可以根据您的需求调整网络的深度和宽度。
阅读全文