将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。 输入格式: 每个输入包含一个测试用例,即正整数N (0<N≤30)。 输出格式: 按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N 1 ​ ={n 1 ​ ,n 2 ​ ,⋯}和N 2 ​ ={m 1 ​ ,m 2 ​ ,⋯},若存在i使得n 1 ​ =m 1 ​ ,⋯,n i ​ =m i ​ ,但是n i+1 ​ <m i+1 ​ ,则N 1 ​ 序列必定在N 2 ​ 序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行

时间: 2023-02-08 08:23:12 浏览: 202
给定一个正整数N,需要求出所有可能的整数分解式子。 可以使用递归的方法来解决这个问题。在递归过程中,每次考虑当前剩余数字中最小的数字,并将其从剩余数字中减去。如果剩余数字为0,则输出当前分解式子。如果剩余数字大于0,则对剩余数字继续递归。 代码如下: ``` def dfs(n, start, path, res): if n == 0: res.append(path) return for i in range(start, n + 1): dfs(n - i, i, path + [i], res) def integer_decomposition(n): res = [] dfs(n, 1, [], res) res.sort() return res n = 7 print(integer_decomposition(n)) ``` 输出结果为: ``` [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 3], [1, 1, 1, 2, 2], [1, 1, 1, 4], [1, 1, 2, 3], [1, 1, 5], [1, 2, 2, 2], [1, 2, 4], [1, 3, 3], [1, 6], [2, 2, 3], [2, 5], [3, 4], [7]] ```
相关问题

将一个正整数n分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数n的所有整数分解式子

### 回答1: 这是一个比较复杂的问题,需要用到递归算法来解决。以下是一个Python的实现代码: def partition(n, m): if n == : return [[]] if n < or m == : return [] res = [] for i in range(min(n, m), , -1): for p in partition(n-i, i): res.append([i] + p) return res n = int(input("请输入一个正整数:")) res = partition(n, n) for p in res: print(" + ".join(str(x) for x in p) + " = " + str(n)) 这个程序中,partition函数接受两个参数:n表示要分解的正整数,m表示当前可以使用的最大正整数。程序首先判断特殊情况:如果n为,则返回一个空列表,表示已经找到了一种分解方法;如果n小于或者m为,则返回一个空列表,表示当前的分解方法不可行。否则,程序遍历从m到1的所有正整数i,对于每个i,递归调用partition函数,求出n-i的所有分解方法,并将i加入到每个分解方法的开头,得到新的分解方法。最后,程序返回所有的分解方法。 在主程序中,程序读入一个正整数n,然后调用partition函数求出所有的分解方法,并输出每个分解方法。输出时,程序将每个分解方法转换成字符串,用加号连接起来,然后输出等于n的表达式。 ### 回答2: 正整数分解问题是一个经典的组合问题,也是计算机算法设计中的一个重要问题。它涉及到组合数学和动态规划等计算机科学领域的知识。在计算机算法设计中,通过对原问题进行递归分解和动态规划优化,可以有效地解决正整数分解问题。 解决正整数分解问题的基本思路是:将正整数n拆分成两个正整数m和n-m,并在m和n-m之间递归求解,直到拆分到只有一个数时,记录下分解的结果,以此来完成对原问题的解。这种方法是分治算法的典型应用,通常可以通过树形递归来实现。 除此之外,我们还可以采用动态规划方法来解决正整数分解问题。具体方法是:设S(n)为正整数n的所有分解方法总数,则有以下递推式: S(n) = S(n-1) + S(n-2) + ... + S(1) 这个递推式的意义是,对于正整数n,它可以分解成n-1和1,也可以分解成n-2和2,以此类推,直到最后可以分解成1和n-1。因此,我们可以通过累加S(1)到S(n-1)的值,来求得S(n)的值。 以上是两种比较常用的解题方法。总之,对于这个问题,需要灵活运用数学知识和计算机算法实现,才能得到令人满意的解答。 ### 回答3: 问题描述: 给定一个正整数n,现在需要编程求出所有可以将n分解成若干个正整数相加的方案。 分析: 为了求出所有的分解方案,我们可以采用递归的思想。具体地,对于当前的n,我们从1开始枚举每个小于等于n的正整数i,然后递归求解剩余的n-i。如果n-i等于0,说明已经找到了一种分解方案。否则,继续从n-i开始分解。 代码实现: 下面是用C++实现的代码。注意,在输出时,我们需要将分解结果按照非递减的顺序输出,避免重复。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; void dfs(int n, vector<int>& path) { if (n == 0) { for (int i = 0; i < path.size(); i++) { if (i > 0) cout << " "; cout << path[i]; } cout << endl; return; } for (int i = 1; i <= n; i++) { if (path.empty() || i >= path.back()) { path.push_back(i); dfs(n - i, path); path.pop_back(); } } } int main() { int n; cin >> n; vector<int> path; dfs(n, path); return 0; } ``` 总结: 本题是一道典型的递归问题,需要注意的是,在进行递归时,要避免重复。具体地,在每次递归时,只枚举大于等于前一个数字的数,这样可以避免重复,也保证了分解结果按照非递减顺序输出。

用c语言将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。

这是一个经典的动态规划问题,可以使用递归+记忆化搜索的方式来解决。 具体思路如下: 1. 定义一个函数 `dfs(int n, int k)`,表示将正整数 `n` 分解成若干个数之和,其中最大的数不超过 `k`。 2. 如果 `n == 0`,表示已经分解完成,则输出当前的分解方案。 3. 在区间 `[1, k]` 中枚举当前选择的数 `i`,并且递归求解 `dfs(n-i, i)`,即将剩余的数 `n-i` 分解成若干个数之和,其中最大的数不超过 `i`。 4. 为了避免重复计算,可以使用一个数组 `dp` 记录已经求解过的结果,避免重复计算。 下面是具体的 C 代码实现: ```c #include <stdio.h> #define MAXN 100 int dp[MAXN][MAXN]; // dp[i][j] 表示将 i 分解成若干个数之和,其中最大的数不超过 j void dfs(int n, int k, int ans[], int len) { if (n == 0) { for (int i = 0; i < len; i++) { printf("%d ", ans[i]); } printf("\n"); return; } for (int i = 1; i <= k; i++) { if (n >= i && dp[n-i][i] == 1) { // 只有已经求解过的结果才能使用 ans[len] = i; dfs(n-i, i, ans, len+1); } } } int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) { dp[i][1] = 1; // 边界条件:只有一个数时只有一种分解方式 for (int j = 2; j <= i; j++) { dp[i][j] = dp[i-j][j] + dp[i-1][j-1]; } } int ans[MAXN]; dfs(n, n, ans, 0); return 0; } ``` 注意,这里只是输出了所有的分解方案,如果需要统计分解的总数,可以在 `dfs` 函数中使用一个计数器进行累加,或者在 `main` 函数中统计输出的行数。
阅读全文

相关推荐

最新推荐

recommend-type

utlog.sqlite

utlog.sqlite
recommend-type

钢结构原理课程设计:露顶式平面钢闸门设计任务及指南

内容概要:本文档为《钢结构原理》课程设计任务及指导书,主要面向水利水电工程专业的学生。详细介绍了课程设计的目的,旨在帮助学生掌握钢结构基本理论以及相关规范的使用方法,培养独立分析和解决实际工程问题的能力。提供了设计所需的背景资料,如提升式平面钢闸门的相关参数及其启动装置、选用材料等。具体的设计内容包括但不限于了解任务要求,确定结构形式,设计面板及各类梁的设计计算。同时提出了明确的设计要求和成果形式。 适合人群:水利水电工程专业的本科生或研究生,尤其是已学习过《钢结构原理》课程的学生。 使用场景及目标:通过本任务的学习和实践,学生能加深对钢结构设计理念的理解,在实际操作过程中学会应用国家最新规范进行结构设计计算,提升个人的专业能力和项目经验。 阅读建议:结合课本内容及相关行业规范认真阅读和准备设计方案,注意手绘图纸的质量和技术报告的撰写要求。
recommend-type

springboot-vue-数计学院学生综合素质评价系统的设计与实现-源码工程-29页从零开始全套图文详解-28页设计论文-21页答辩ppt-全套开发环境工具、文档模板、电子教程、视频教学资源分享

资源说明: 1:29页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 2:28页毕业设计论文,万字长文,word文档,支持二次编辑。 3:21页答辩ppt,pptx格式,支持二次编辑。 4:工具环境、ppt参考模板、相关教程资源分享。 5:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 6:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在 IDEA 中开发。服务端用 Java 并借 Spring Boot 框架搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 理解 B/S 结构在分布式系统优势,熟练运用 IDEA 及相关工具流程开发 Java 项目。后端可掌握 Java 编程技巧,学会用 Spring Boot 搭建后台,体会便利以提升效率、专注业务。前端能掌握 VUE 框架构建交互界面,还会使用 MySQL 存储管理数据。此外,能了解前后端数据交互,掌握打包部署流程。
recommend-type

四相交错并联同步整流Buck变器 MATLAB仿真 低压大电流 输入:12VDC 输出:1V 100A 单相电流25A 关键参数设计,磁元件设计 理想仿真,实现均流输出

四相交错并联同步整流Buck变器 MATLAB仿真 低压大电流 输入:12VDC 输出:1V 100A 单相电流25A 关键参数设计,磁元件设计 理想仿真,实现均流输出
recommend-type

Python机器人-这是机器人算法的 Python 代码集合

这是机器人算法的 Python 代码集合。 特征: 1.易于阅读,便于理解每个算法的基本思想。 2.选择了广泛使用且实用的算法。 3.最小依赖性。 如何使用: 克隆此存储库。 git clone https://github.com/AtsushiSakai/PythonRobotics.git 安装所需的库。 使用 conda : conda env create -f requirements/environment.yml 使用 pip : pip install -r requirements/requirements.txt
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。