实现从起点坐标开始遍历八个不同坐标的藏宝点,最后再到出口坐标,并且要用时最短,现已经知道这十个坐标的位置,也有两个坐标之间的最短路径的函数,给出python代码
时间: 2024-03-25 22:39:08 浏览: 40
好的,下面是一个简单的实现,使用 Dijkstra 算法来计算最短路径:
```python
import heapq
def shortest_path(start, end, points, distance_fn):
# 使用 Dijkstra 算法计算最短路径
pq = [(0, start)]
visited = set()
distances = {start: 0}
while pq:
(cost, node) = heapq.heappop(pq)
if node == end:
break
if node in visited:
continue
visited.add(node)
for neighbor in points:
if neighbor == node or neighbor in visited:
continue
new_cost = cost + distance_fn(node, neighbor)
if neighbor not in distances or new_cost < distances[neighbor]:
distances[neighbor] = new_cost
heapq.heappush(pq, (new_cost, neighbor))
return distances[end]
# 10 个点的坐标
points = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)]
# 两个点之间的最短路径函数
def distance_fn(p1, p2):
return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1])
# 依次遍历八个藏宝点
start = (0, 0)
end = (9, 9)
total_distance = 0
for i in range(1, 9):
point = points[i]
distance = shortest_path(start, point, points, distance_fn)
total_distance += distance
start = point
# 最后再到出口坐标
total_distance += shortest_path(start, end, points, distance_fn)
print("最短路径的长度为:", total_distance)
```
需要注意的是,这里的 `points` 列表中,第一个元素是起点,最后一个元素是终点,中间的 8 个元素是藏宝点。
阅读全文