python 读取csv文件 采用Bagging和Random Forest组合分类算法对数据集进行训练
时间: 2024-01-21 13:15:59 浏览: 142
可以使用Python中的pandas库来读取CSV文件,使用sklearn库来实现Bagging和Random Forest算法。
读取CSV文件的代码示例:
```python
import pandas as pd
# 读取csv文件
df = pd.read_csv('data.csv')
```
下面是使用Bagging和Random Forest组合分类算法对数据集进行训练的代码示例:
```python
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 读取csv文件
df = pd.read_csv('data.csv')
# 划分数据集
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 构建Bagging模型
bagging = BaggingClassifier(n_estimators=10, random_state=0)
bagging.fit(X_train, y_train)
y_pred_bagging = bagging.predict(X_test)
# 构建Random Forest模型
random_forest = RandomForestClassifier(n_estimators=10, random_state=0)
random_forest.fit(X_train, y_train)
y_pred_rf = random_forest.predict(X_test)
# 组合两个模型的预测结果
y_pred = (y_pred_bagging + y_pred_rf) / 2
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
在这个例子中,我们将数据集划分为训练集和测试集。然后,我们使用Bagging和Random Forest算法分别构建了两个模型,并预测了测试集的结果。最后,我们将两个模型的预测结果组合起来,并计算了准确率。
阅读全文