对多分类任务实验中实现早停机制,并在测试集上测试 选择上述实验中效果最好的组合,手动将训练数据划分为训练集和验证集,实现早停机制, 并在测试集上进行测试。训练集:验证集=8:2,早停轮数为5.代码
时间: 2024-03-24 12:37:21 浏览: 101
py-faster-rcnn划分数据集(训练集、验证集、训练验证集、测试集)
好的,下面是一个简单的代码实现,以 PyTorch 为例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
# 定义模型
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 5)
self.dropout = nn.Dropout(p=0.2)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.dropout(x)
x = self.fc2(x)
return x
# 加载数据集,X 是特征矩阵,y 是标签
X, y = load_data()
# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# 转换为 PyTorch 的 tensor 格式
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)
# 定义超参数
lr = 0.001
epoches = 50
batch_size = 32
# 定义模型、优化器和损失函数
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# 训练模型
best_val_acc = 0.0
early_stop_count = 0
for epoch in range(epoches):
# 训练集迭代器
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(X_train, y_train),
batch_size=batch_size, shuffle=True)
# 训练模型
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 验证集性能
model.eval()
with torch.no_grad():
val_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(X_val, y_val),
batch_size=batch_size, shuffle=False)
val_preds = []
val_targets = []
for batch_idx, (data, target) in enumerate(val_loader):
output = model(data)
val_preds.extend(torch.argmax(output, dim=1).tolist())
val_targets.extend(target.tolist())
val_acc = accuracy_score(val_targets, val_preds)
print('Epoch: {}, Val Acc: {:.4f}'.format(epoch, val_acc))
# 早停机制
if val_acc > best_val_acc:
best_val_acc = val_acc
early_stop_count = 0
else:
early_stop_count += 1
if early_stop_count >= 5:
print('Early stopping!')
break
# 在测试集上进行测试
X_test, y_test = load_test_data()
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.long)
model.eval()
with torch.no_grad():
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(X_test, y_test),
batch_size=batch_size, shuffle=False)
test_preds = []
test_targets = []
for batch_idx, (data, target) in enumerate(test_loader):
output = model(data)
test_preds.extend(torch.argmax(output, dim=1).tolist())
test_targets.extend(target.tolist())
test_acc = accuracy_score(test_targets, test_preds)
print('Test Acc: {:.4f}'.format(test_acc))
print('Confusion Matrix:')
print(confusion_matrix(test_targets, test_preds))
```
其中,load_data() 函数和 load_test_data() 函数用于加载数据集。在训练过程中,使用早停机制防止过拟合,如果连续 5 个 epoch 验证集的性能没有提升,就停止训练。在测试集上进行测试,计算准确率和混淆矩阵等指标,评估模型的性能。
阅读全文