写出用海康相机和jaka zu 3机械臂实现相机标定和手眼标定的python代码
时间: 2023-06-13 21:07:11 浏览: 261
以下是基于海康相机和jaka zu 3机械臂实现相机标定和手眼标定的Python代码:
相机标定:
```python
import cv2
import numpy as np
# 定义标定板的规格
pattern_size = (7, 5)
square_size = 25 # mm
# 获取标定板角点的坐标
object_points = np.zeros((np.prod(pattern_size), 3), dtype=np.float32)
object_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
object_points *= square_size
# 设置摄像头参数
camera_matrix = np.eye(3)
dist_coeffs = np.zeros((4, 1))
# 获取标定板图像
image_files = ['image_1.jpg', 'image_2.jpg', 'image_3.jpg']
image_points = []
for file in image_files:
img = cv2.imread(file)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测标定板角点
ret, corners = cv2.findChessboardCorners(gray, pattern_size, None)
# 如果检测成功,添加角点坐标
if ret:
image_points.append(corners)
cv2.drawChessboardCorners(img, pattern_size, corners, ret)
cv2.imshow('image', img)
cv2.waitKey(500)
# 进行相机标定
ret, camera_matrix, dist_coeffs, rvecs, tvecs = cv2.calibrateCamera(
object_points, image_points, gray.shape[::-1], None, None)
print('相机内参矩阵:\n', camera_matrix)
print('畸变系数:\n', dist_coeffs)
```
手眼标定:
```python
import numpy as np
import cv2
from jaka_sdk import *
# 定义标定板的规格
pattern_size = (7, 5)
square_size = 25 # mm
# 获取标定板角点的坐标
object_points = np.zeros((np.prod(pattern_size), 3), dtype=np.float32)
object_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
object_points *= square_size
# 设置相机和机械臂的变换关系
camera_to_base = np.array([
[0.707, 0.000, 0.707, 100],
[0.000, 1.000, 0.000, 200],
[-0.707, 0.000, 0.707, 300],
[0.000, 0.000, 0.000, 1.000]
])
tool_to_flange = np.array([
[0.000, -1.000, 0.000, 0],
[0.000, 0.000, -1.000, 0],
[1.000, 0.000, 0.000, 100],
[0.000, 0.000, 0.000, 1.000]
])
# 获取标定板图像和机械臂末端位置
image_files = ['image_1.jpg', 'image_2.jpg', 'image_3.jpg']
end_effector_poses = []
for file in image_files:
img = cv2.imread(file)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测标定板角点
ret, corners = cv2.findChessboardCorners(gray, pattern_size, None)
# 如果检测成功,添加角点坐标和机械臂末端位置
if ret:
rvec, tvec = cv2.solvePnP(object_points, corners, camera_matrix, dist_coeffs)
end_effector_poses.append(JakaRobot.get_forward_kinematics(tool_to_flange, rvec, tvec))
# 进行手眼标定
camera_to_end_effector = np.zeros((4, 4))
for i in range(len(end_effector_poses) - 1):
A = np.linalg.inv(end_effector_poses[i])
B = end_effector_poses[i + 1]
C = np.linalg.inv(camera_to_base)
camera_to_end_effector += np.dot(np.dot(C, B), A)
camera_to_end_effector /= len(end_effector_poses) - 1
print('相机到机械臂末端的变换矩阵:\n', camera_to_end_effector)
```
阅读全文