virtual_node_feat = torch.cat((torch.zeros(num_virtual_nodes, 74), torch.ones(num_virtual_nodes, 1)), 1)是什么意思
时间: 2023-05-10 18:55:36 浏览: 146
这段代码是在使用 PyTorch 框架中创建一个包含虚拟节点特征的张量。其中,torch.zeros(num_virtual_nodes, 74) 创建了一个大小为 num_virtual_nodes x 74 的全零张量,torch.ones(num_virtual_nodes, 1) 创建了一个大小为 num_virtual_nodes x 1 的全一张量。torch.cat((torch.zeros(num_virtual_nodes, 74), torch.ones(num_virtual_nodes, 1)), 1) 将这两个张量按列拼接起来,得到一个大小为 num_virtual_nodes x 75 的张量,其中前 74 列为全零,最后一列为全一。
相关问题
这段代码有什么错误def forward(self,x): num_nodes = x.size(1) # sub_graph size batch_size = x.size(0) W = torch.cat([self.W] * batch_size, dim=0) representation = torch.matmul(x, W) r_sum = torch.sum(representation, dim=-1, keepdim=False) b = torch.zeros([batch_size, num_nodes]) b = Variable(b) one = torch.ones_like(r_sum) zero = torch.zeros_like(r_sum) label = torch.clone(r_sum) label = torch.where(label == 0, one, zero) b.data.masked_fill_(label.bool(), -float('inf')) num_iterations = 3 for i in range(num_iterations): c = torch.nn.functional.softmax(b, dim=-1) weight_coeff = c.unsqueeze(dim=1) representation_global = torch.matmul(weight_coeff, representation) representation_global_all = torch.cat([representation_global] * num_nodes, dim=1) representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1) representation_similarity.data.masked_fill_(label.bool(), -float('inf')) b = representation_similarity return representation_global.squeeze(dim=1)
这段代码中存在一个错误。在for循环中,代码更新了变量b,但是在更新后没有再次进行softmax操作,导致后续的计算结果不正确。因此,需要在for循环中,在更新b后再次进行softmax操作,如下所示:
```
for i in range(num_iterations):
c = torch.nn.functional.softmax(b, dim=-1)
weight_coeff = c.unsqueeze(dim=1)
representation_global = torch.matmul(weight_coeff, representation)
representation_global_all = torch.cat([representation_global] * num_nodes, dim=1)
representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1)
representation_similarity.data.masked_fill_(label.bool(), -float('inf'))
b = torch.nn.functional.softmax(representation_similarity, dim=-1) # 进行softmax操作
```
这样修改后,该段代码的功能应该能够正常运行。
使用train_g.nodes['drug'].data['drug_node_feat'] = torch.from_numpy(np.zeros((train_drug_num, dataset.data.x_drugs.shape[1])))创建了属性之后要怎么赋值
你可以使用以下方式为属性赋值:
```python
train_g.nodes['drug'].data['drug_node_feat'] = torch.tensor(your_data)
```
其中,`your_data`是你想要赋值给属性的数据。请确保`your_data`的形状为`(train_drug_num, feat_dim)`,其中`feat_dim`是属性的维度。你可以根据自己的需求设置属性的值。
阅读全文