给出Conditional Generative Adversarial Network 的判别器和生成器训练部分代码
时间: 2023-06-09 10:06:45 浏览: 152
好的,以下是 Conditional Generative Adversarial Network 的判别器和生成器训练部分代码,供您参考:
判别器训练部分代码:
```
# 定义判别器损失函数
def discriminator_loss(real_output, fake_output):
real_loss = tf.keras.losses.binary_crossentropy(tf.ones_like(real_output), real_output)
fake_loss = tf.keras.losses.binary_crossentropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
# 定义判别器优化器
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义判别器训练函数
@tf.function
def train_discriminator(images, labels, generator):
with tf.GradientTape() as disc_tape:
# 生成假样本
generated_images = generator([labels, noise])
# 判别器判别真假样本
real_output = discriminator([images, labels])
fake_output = discriminator([generated_images, labels])
# 计算判别器损失
loss = discriminator_loss(real_output, fake_output)
# 反向传播更新判别器参数
gradients_of_discriminator = disc_tape.gradient(loss, discriminator.trainable_variables)
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
return loss
```
生成器训练部分代码:
```
# 定义生成器损失函数
def generator_loss(fake_output):
return tf.keras.losses.binary_crossentropy(tf.ones_like(fake_output), fake_output)
# 定义生成器优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义生成器训练函数
@tf.function
def train_generator(labels, noise, generator):
with tf.GradientTape() as gen_tape:
# 生成假样本
generated_images = generator([labels, noise])
# 判别器判别假样本
fake_output = discriminator([generated_images, labels])
# 计算生成器损失
loss = generator_loss(fake_output)
# 反向传播更新生成器参数
gradients_of_generator = gen_tape.gradient(loss, generator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
return loss
```
以上是我尽可能详细地回答了您的问题,如果您还有其他问题可以继续提出。
阅读全文