基于pytorch的条件生成对抗神经网络用于生成新数据的代码
时间: 2023-03-04 08:33:27 浏览: 121
PyTorch生成对抗网络编程
5星 · 资源好评率100%
以下是基于PyTorch的条件生成对抗神经网络(Conditional Generative Adversarial Network,CGAN)用于生成新数据的示例代码:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# 定义判别器模型
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, x, y):
x = x.view(-1, 784)
y = y.view(-1, 10)
x = torch.cat([x, y], 1)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.sigmoid(self.fc3(x))
return x
# 定义生成器模型
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc1 = nn.Linear(110, 256)
self.fc2 = nn.Linear(256, 512)
self.fc3 = nn.Linear(512, 784)
def forward(self, x, y):
x = torch.cat([x, y], 1)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.tanh(self.fc3(x))
return x
# 定义训练数据集
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
# 定义数据加载器
batch_size = 100
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
# 定义CGAN模型
discriminator = Discriminator()
generator = Generator()
# 定义优化器和损失函数
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0002)
optimizer_g = optim.Adam(generator.parameters(), lr=0.0002)
criterion = nn.BCELoss()
# 定义训练过程
num_epochs = 200
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 训练判别器
images = Variable(images)
labels = Variable(torch.eye(10)[labels])
real_labels = Variable(torch.ones(batch_size, 1))
fake_labels = Variable(torch.zeros(batch_size, 1))
discriminator.zero_grad()
outputs = discriminator(images, labels)
d_loss_real = criterion(outputs, real_labels)
z = Variable(torch.randn(batch_size, 100))
fake_images = generator(z, labels)
outputs = discriminator(fake_images, labels)
d_loss_fake = criterion(outputs, fake_labels)
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
optimizer_d.step()
# 训练生成器
generator.zero_grad()
z = Variable(torch.randn(batch_size, 100))
fake_images = generator(z, labels)
outputs = discriminator(fake_images, labels)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
optimizer_g.step()
# 输出训练结果
if (i+1) % 100 == 0:
print("
阅读全文