opencv canny c++示例

时间: 2023-05-17 19:04:44 浏览: 113
以下是一个使用 OpenCV Canny 边缘检测算法的示例代码: ``` #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { // 读取图像 Mat image = imread("test.jpg", IMREAD_GRAYSCALE); // 检查图像是否成功读取 if (image.empty()) { cout << "无法读取图像文件" << endl; return -1; } // 应用 Canny 边缘检测算法 Mat edges; Canny(image, edges, 100, 200); // 显示原始图像和边缘检测结果 imshow("原始图像", image); imshow("边缘检测结果", edges); waitKey(0); return 0; } ``` 这个示例代码演示了如何使用 OpenCV 的 Canny 边缘检测算法来检测图像中的边缘。首先,我们使用 `imread` 函数读取一张灰度图像。然后,我们调用 `Canny` 函数来应用 Canny 边缘检测算法。最后,我们使用 `imshow` 函数来显示原始图像和边缘检测结果。
相关问题

opencv canny

Canny算法是一种常用的边缘检测算法,它可以帮助我们找到图像中的边缘。在OpenCV中,可以使用Canny函数来实现Canny算法的应用。引用\[1\]中的代码示例展示了如何使用OpenCV的Canny接口进行实验。首先,通过cv2.imread函数读取图像,并将其转换为灰度图像。然后,使用cv2.GaussianBlur函数对图像进行高斯平滑处理。接下来,调用cv2.Canny函数,传入图像、最小阈值和最大阈值,以及可选的Sobel算子孔径大小。最后,使用cv2.imshow函数显示边缘检测结果。引用\[2\]中的代码示例展示了使用C++的OpenCV库进行Canny边缘检测的示例。首先,使用cv::imread函数读取图像,并将其转换为灰度图像。然后,定义最小阈值、最大阈值和Sobel算子孔径大小,并调用cv::Canny函数进行边缘检测。最后,使用cv::imshow函数显示边缘检测结果。引用\[3\]给出了Canny函数的函数原型,其中包括输入图像、输出边缘、阈值参数、Sobel算子孔径大小和L2gradient参数。 #### 引用[.reference_title] - *1* [OpenCV学习:边缘检测(Canny算法)](https://blog.csdn.net/jinhao2302/article/details/118861320)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [opencv canny边缘检测算法详解](https://blog.csdn.net/weixin_44901043/article/details/123249922)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

给出10个opencv c++示例代码

1. 读取并显示图像: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg"); imshow("image", img); waitKey(0); return 0; } ``` 2. 灰度图像转换: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg"); Mat gray; cvtColor(img, gray, COLOR_BGR2GRAY); imshow("gray image", gray); waitKey(0); return 0; } ``` 3. 图像裁剪: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg"); Rect roi(100, 100, 200, 200); Mat crop = img(roi); imshow("cropped image", crop); waitKey(0); return 0; } ``` 4. 图像缩放: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg"); Mat resize; cv::resize(img, resize, cv::Size(), 0.5, 0.5); imshow("resized image", resize); waitKey(0); return 0; } ``` 5. 图像旋转: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg"); Mat rotate; Point2f center(img.cols/2, img.rows/2); Mat rot_mat = getRotationMatrix2D(center, 45, 1.0); warpAffine(img, rotate, rot_mat, img.size()); imshow("rotated image", rotate); waitKey(0); return 0; } ``` 6. 图像阈值化: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg", 0); Mat threshold; threshold(img, threshold, 128, 255, THRESH_BINARY); imshow("threshold image", threshold); waitKey(0); return 0; } ``` 7. 图像边缘检测: ``` #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat img = imread("image.jpg", 0); Mat edges; Canny(img,
阅读全文

相关推荐

大家在看

recommend-type

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测['Drowning', 'Person out of water', 'Swimming'] 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、摄像头实时画面 【数据集】 本项目使用的数据集下载地址为: https://download.csdn.net/download/DeepLearning_/89398245 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
recommend-type

Handbook of PI and PID Controller Tuning Rules 3e

The vast majority of automatic controllers used to compensate industrial processes are PI or PID type. This book comprehensively compiles, using a unified notation, tuning rules for these controllers proposed from 1935 to 2008. The tuning rules are carefully categorized and application information about each rule is given. This book discusses controller architecture and process modeling issues, as well as the performance and robustness of loops compensated with PI or PID controllers. This unique publication brings together in an easy-to-use format material previously published in a large number of papers and books. This wholly revised third edition extends the presentation of PI and PID controller tuning rules, for single variable processes with time delays, to include additional rules compiled since the second edition was published in 2006.
recommend-type

中国AI安防行业:Ambarella业绩反映AI需求强劲.zip

中国AI安防行业:Ambarella业绩反映AI需求强劲
recommend-type

0065-极智AI-解读T4上商汤OpenPPL vs TensorRT7 vs TensorRT8性能对比修正-个人笔记

0065_极智AI_解读T4上商汤OpenPPL vs TensorRT7 vs TensorRT8性能对比修正-个人笔记
recommend-type

hanlp 自然语言处理入门

hanlp 自然语言处理入门 资料全

最新推荐

recommend-type

opencv3/C++实现霍夫圆/直线检测

本篇文章将详细介绍如何使用OpenCV3和C++来实现霍夫直线检测和霍夫圆检测。 首先,我们来看霍夫直线检测。霍夫直线检测是基于极坐标系统进行的,它通过将像素空间中的点映射到极坐标空间中的一条曲线来找到直线。...
recommend-type

OpenCV 表盘指针自动读数的示例代码

- **轮廓查找**:使用Canny边缘检测算法`cv.Canny()`找到图像的边缘,然后用`cv.findContours()`找到轮廓。通过遍历轮廓并计算外接矩形的面积,可以找到最接近理想钟表形状的矩形,从而确定圆心位置。这种方法依赖...
recommend-type

OpenCV.js中文教程

OpenCV.js 的诞生源于 Gary Bradski 在英特尔的初期工作,自2000年首次发布以来,OpenCV 逐渐成为计算机视觉领域的重要工具,支持多种编程语言如C++、Python和Java,广泛应用于Windows、Linux、OS X、Android和iOS...
recommend-type

STM32之光敏电阻模拟路灯自动开关灯代码固件

这是一个STM32模拟天黑天亮自动开关灯代码固件,使用了0.96寸OLED屏幕显示文字,例程亲测可用,视频示例可B站搜索 285902929
recommend-type

PHP在线工具箱源码站长引流+在线工具箱源码+多款有趣的在线工具+一键安装

PHP在线工具箱源码站长引流+在线工具箱源码+多款有趣的在线工具+一键安装 测试环境:nginx+php5.6+mysql5.5 安装说明:上传后访问安装即可
recommend-type

PowerShell控制WVD录像机技术应用

资源摘要信息:"录像机" 标题: "录像机" 可能指代了两种含义,一种是传统的录像设备,另一种是指计算机上的录像软件或程序。在IT领域,通常我们指的是后者,即录像机软件。随着技术的发展,现代的录像机软件可以录制屏幕活动、视频会议、网络课程等。这类软件多数具备高效率的视频编码、画面捕捉、音视频同步等功能,以满足不同的应用场景需求。 描述: "录像机" 这一描述相对简单,没有提供具体的功能细节或使用场景。但是,根据这个描述我们可以推测文档涉及的是关于如何操作录像机,或者如何使用录像机软件的知识。这可能包括录像机软件的安装、配置、使用方法、常见问题排查等信息。 标签: "PowerShell" 通常指的是微软公司开发的一种任务自动化和配置管理框架,它包含了一个命令行壳层和脚本语言。由于标签为PowerShell,我们可以推断该文档可能会涉及到使用PowerShell脚本来操作或管理录像机软件的过程。PowerShell可以用来执行各种任务,包括但不限于启动或停止录像、自动化录像任务、从录像机获取系统状态、配置系统设置等。 压缩包子文件的文件名称列表: WVD-main 这部分信息暗示了文档可能与微软的Windows虚拟桌面(Windows Virtual Desktop,简称WVD)相关。Windows虚拟桌面是一个桌面虚拟化服务,它允许用户在云端访问一个虚拟化的Windows环境。文件名中的“main”可能表示这是一个主文件或主目录,它可能是用于配置、管理或与WVD相关的录像机软件。在这种情况下,文档可能包含如何使用PowerShell脚本与WVD进行交互,例如记录用户在WVD环境中的活动,监控和记录虚拟机状态等。 基于以上信息,我们可以进一步推断知识点可能包括: 1. 录像机软件的基本功能和使用场景。 2. 录像机软件的安装和配置过程。 3. 录像机软件的高级功能,如自定义录像设置、自动化任务、音视频编辑等。 4. PowerShell脚本的基础知识,包括如何编写简单和复杂的脚本。 5. 如何利用PowerShell管理录像机软件,实现自动化控制和监控录像过程。 6. Windows虚拟桌面(WVD)的基本概念和使用方法。 7. 如何在WVD环境中集成录像功能,以及如何使用PowerShell进行相关配置和管理。 8. 录像数据的处理和存储,包括录像文件的格式、转码、备份和恢复等。 9. 录像机软件在企业环境中应用的策略和最佳实践。 10. 常见问题诊断和解决方法,以及如何使用PowerShell脚本来应对录像机软件出现的问题。 这个知识点总结覆盖了从基础操作到高级管理的多个方面,旨在为读者提供一个全面的录像机软件使用和管理的框架。通过这些知识点,IT专业人员可以更有效地部署、操作和维护录像机系统,确保录像机软件能够满足各种业务需求。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Honeywell打印机驱动提升秘诀:从基础到高级配置的全方位解析

![HoneywellPrint_DLL_UM_CN.pdf](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190425160011/Anonymous-Types-in-C-1024x540.png) # 摘要 本文针对Honeywell打印机驱动的安装、配置、高级功能配置、故障诊断与优化以及安全与合规性进行了全面的介绍。首先概述了Honeywell打印机驱动的基础知识,随后详细阐述了驱动安装流程、基础打印设置及高级功能的实现。接着,文中探讨了打印机驱动在日常使用中可能遇到的常见问题及其解决方法,并提出了一系列打印性能优
recommend-type

Python输入三个数 a,b,c。判断能否以它们为三个边长构成直角三角形。若能,输出 YES,否则 输出NO。

在Python中,我们可以利用勾股定理来判断三个数a、b和c是否可以作为直角三角形的边长。如果满足a² + b² = c²,则这是一组直角三角形的三边;反之则不是。以下是一个简单的函数实现: ```python def is_right_triangle(a, b, c): if a**2 + b**2 == c**2 or a**2 + c**2 == b**2 or b**2 + c**2 == a**2: # 三种情况考虑,因为两边之和等于第三边的情况不属于常规直角三角形 return "YES" else: return "NO"
recommend-type

探索杂货店后端技术与JavaScript应用

资源摘要信息:"杂货店后端开发项目使用了JavaScript技术。" 在当今的软件开发领域,使用JavaScript来构建杂货店后端系统是一个非常普遍的做法。JavaScript不仅在前端开发中占据主导地位,其在Node.js的推动下,后端开发中也扮演着至关重要的角色。Node.js是一个能够使用JavaScript语言运行在服务器端的平台,它使得开发者能够使用熟悉的一门语言来开发整个Web应用程序。 后端开发是构建杂货店应用系统的核心部分,它主要负责处理应用逻辑、与数据库交互以及确保网络请求的正确响应。后端系统通常包含服务器、应用以及数据库这三个主要组件。 在开发杂货店后端时,我们可能会涉及到以下几个关键的知识点: 1. Node.js的环境搭建:首先需要在开发机器上安装Node.js环境。这包括npm(Node包管理器)和Node.js的运行时。npm用于管理项目依赖,比如各种中间件、数据库驱动等。 2. 框架选择:开发后端时,一个常见的选择是使用Express框架。Express是一个灵活的Node.js Web应用框架,提供了一系列强大的特性来开发Web和移动应用。它简化了路由、HTTP请求处理、中间件等功能的使用。 3. 数据库操作:根据项目的具体需求,选择合适的数据库系统(例如MongoDB、MySQL、PostgreSQL等)来进行数据的存储和管理。在JavaScript环境中,数据库操作通常会依赖于相应的Node.js驱动或ORM(对象关系映射)工具,如Mongoose用于MongoDB。 4. RESTful API设计:构建一个符合REST原则的API接口,可以让前端开发者更加方便地与后端进行数据交互。RESTful API是一种开发Web服务的架构风格,它利用HTTP协议的特性,使得Web服务能够使用统一的接口来处理资源。 5. 身份验证和授权:在杂货店后端系统中,管理用户账户和控制访问权限是非常重要的。这通常需要实现一些身份验证机制,如JWT(JSON Web Tokens)或OAuth,并根据用户角色和权限管理访问控制。 6. 错误处理和日志记录:为了保证系统的稳定性和可靠性,需要实现完善的错误处理机制和日志记录系统。这能帮助开发者快速定位问题,以及分析系统运行状况。 7. 容器化与部署:随着Docker等容器化技术的普及,越来越多的开发团队选择将应用程序容器化部署。容器化可以确保应用在不同的环境和系统中具有一致的行为,极大地简化了部署过程。 8. 性能优化:当后端应用处理大量数据或高并发请求时,性能优化是一个不可忽视的问题。这可能包括数据库查询优化、缓存策略的引入、代码层面的优化等等。 通过以上知识点的综合运用,我们可以构建出一个功能丰富、性能优化良好并且可扩展性强的杂货店后端系统。当然,在实际开发过程中,还需要充分考虑安全性、可维护性和测试等因素。