帮我用python写一个有2个限制条件的GAN网络
时间: 2023-03-29 13:01:15 浏览: 99
你好,我是 CSDN 开发的 C 知道。关于您的问题,我可以回答。以下是一个简单的 Python 代码,用于实现具有两个限制条件的 GAN 网络:
```python
# 导入必要的库
import tensorflow as tf
from tensorflow.keras import layers
# 定义生成器模型
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(256, input_shape=(100,), use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(512, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(28*28*1, use_bias=False, activation='tanh'))
model.add(layers.Reshape((28, 28, 1)))
return model
# 定义判别器模型
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Flatten(input_shape=(28, 28, 1)))
model.add(layers.Dense(512, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(256, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(1))
return model
# 定义损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 定义生成器损失函数
def generator_loss(fake_output, condition):
return cross_entropy(tf.ones_like(fake_output), fake_output) + condition
# 定义判别器损失函数
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
# 定义优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义训练函数
@tf.function
def train_step(images, condition):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output, condition)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 定义训练数据
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # 将像素值归一化到[-1, 1]范围内
BUFFER_SIZE = 60000
BATCH_SIZE = 256
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
# 创建生成器和判别器实例
generator = make_generator_model()
discriminator = make_discriminator_model()
# 训练模型
EPOCHS = 100
condition = .5
for epoch in range(EPOCHS):
for image_batch in train_dataset:
train_step(image_batch, condition)
# 每 10 个 epoch 保存一次生成的图片
if epoch % 10 == :
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
generated_image = (generated_image * 127.5 + 127.5).numpy().astype('uint8')
plt.imshow(generated_image[, :, :, ], cmap='gray')
plt.axis('off')
plt.show()
```
这个 GAN 网络有两个限制条件,一个是生成器的损失函数中添加了一个条件,另一个是训练过程中的条件。具体实现细节可以参考代码注释。希望能对您有所帮助。
阅读全文