在FCN(nn.Module),取出各层输出
时间: 2023-10-23 11:12:21 浏览: 82
在FCN模型中,可以通过重载forward函数来取出各层的输出。
例如,以下是FCN模型的代码示例:
```
import torch.nn as nn
class FCN(nn.Module):
def __init__(self, num_classes):
super(FCN, self).__init__()
# Define layers
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
self.conv5 = nn.Conv2d(512, 512, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(512 * 7 * 7, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, num_classes)
self.relu = nn.ReLU()
self.dropout = nn.Dropout()
def forward(self, x):
# Forward pass
conv1_out = self.relu(self.conv1(x))
conv2_out = self.relu(self.conv2(self.pool(conv1_out)))
conv3_out = self.relu(self.conv3(self.pool(conv2_out)))
conv4_out = self.relu(self.conv4(self.pool(conv3_out)))
conv5_out = self.relu(self.conv5(self.pool(conv4_out)))
flattened = conv5_out.view(-1, 512 * 7 * 7)
fc1_out = self.dropout(self.relu(self.fc1(flattened)))
fc2_out = self.dropout(self.relu(self.fc2(fc1_out)))
output = self.fc3(fc2_out)
return output, conv1_out, conv2_out, conv3_out, conv4_out, conv5_out, fc1_out, fc2_out
```
在上面的代码中,我们定义了一个FCN模型,其中包含了多个卷积层、池化层和全连接层。
在forward函数中,我们可以通过调用每个层并将输出保存在变量中来获取各层的输出。例如,我们可以使用以下代码来获取第一个卷积层的输出:
```
model = FCN(num_classes=10)
x = torch.randn(1, 3, 224, 224)
output, conv1_out, conv2_out, conv3_out, conv4_out, conv5_out, fc1_out, fc2_out = model(x)
print(conv1_out.shape) # (1, 64, 224, 224)
```
在上面的代码中,我们首先创建了一个FCN模型对象,并使用随机数据x来调用forward函数。然后,我们将forward函数的返回值解包,并将第一个卷积层的输出conv1_out打印出来。
阅读全文