opencv实现halcon卡尺找圆
时间: 2023-09-19 15:05:42 浏览: 389
OpenCV和Halcon都是常用的机器视觉开发工具,它们都提供了丰富的图像处理和分析功能。在OpenCV中,可以使用Hough变换来进行圆形检测,而在Halcon中,可以使用卡尺算法找到圆形。
下面是一个简单的OpenCV实现Halcon卡尺找圆的示例代码:
```python
import cv2
import numpy as np
# 读取图像并转换为灰度图像
img = cv2.imread('circle.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 高斯模糊和Canny边缘检测
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 50, 150)
# Hough圆检测
circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, dp=1, minDist=100, param1=50, param2=30, minRadius=0, maxRadius=0)
# 绘制圆
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
cv2.circle(img, (x, y), r, (0, 255, 0), 2)
cv2.putText(img, "Circle", (x-r, y-r), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
cv2.imshow("Image", img)
cv2.waitKey(0)
```
在Halcon中,可以使用卡尺算法找到圆形的边缘。下面是一个简单的Halcon实现卡尺找圆的示例代码:
```python
import halcon as ha
# 读取图像并转换为灰度图像
img = ha.read_image('circle.png')
gray = ha.convert_image_type(img, 'byte')
# 边缘检测和二值化
edges = ha.edges_image(gray, 'canny', 5, 20)
bin_img = ha.threshold(edges, 128, 255)
# 卡尺找圆
contours = ha.contour(bin_img)
circles = ha.select_shape(contours, 'circle', 'all', 1, 100)
circles = ha.gen_circle_contour_xld(ha.tuple(circles[0]), ha.tuple(circles[1]), ha.tuple(circles[2]))
# 绘制圆
if len(circles) > 0:
for circle in circles:
row, col, radius = ha.tuple(circle)
ha.draw_circle(img, row, col, radius, 'green', 2)
ha.disp_image(img)
ha.wait_seconds(0)
```
以上代码仅供参考,具体实现可能需要根据实际情况进行调整和优化。
阅读全文