opencv实现的halcon卡尺法找圆C++
时间: 2023-09-19 18:05:42 浏览: 370
首先,Halcon中的卡尺法可以通过OpenCV中的Hough变换实现。
步骤如下:
1.读取图像
使用OpenCV中的imread函数读取图像。
2.预处理
使用OpenCV中的高斯滤波和Canny边缘检测对图像进行预处理。
3.检测圆
使用OpenCV中的HoughCircles函数检测圆。
4.绘制圆
使用OpenCV中的circle函数绘制检测到的圆。
5.卡尺法
对于检测到的每个圆,使用卡尺法来测量直径或周长。
以下是示例代码:
```c++
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
// 读取图像
Mat image = imread("circle.png", IMREAD_GRAYSCALE);
// 预处理
GaussianBlur(image, image, Size(3, 3), 0);
Canny(image, image, 50, 150);
// 检测圆
vector<Vec3f> circles;
HoughCircles(image, circles, HOUGH_GRADIENT, 1, image.rows / 8, 200, 100, 0, 0);
// 绘制圆
for (size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
circle(image, center, radius, Scalar(255, 0, 0), 2);
// 卡尺法
const float PI = 3.1415926f;
float sum = 0;
for (int j = 0; j < 360; j++)
{
float x = center.x + radius * cos(j * PI / 180);
float y = center.y + radius * sin(j * PI / 180);
if (x < 0 || x >= image.cols || y < 0 || y >= image.rows)
{
continue;
}
if (image.at<uchar>(cvRound(y), cvRound(x)) != 0)
{
sum += 1;
}
}
float perimeter = 2 * PI * radius;
float diameter = perimeter * sum / 360;
cout << "Diameter: " << diameter << endl;
}
imshow("Circle", image);
waitKey(0);
return 0;
}
```
请注意,此代码仅适用于检测单个圆,并且只测量圆的直径。如果需要检测多个圆或测量其周长,则需要进行相应的修改。
阅读全文
相关推荐













