解释这段代码c_conv = cost_conv(H, W, 2048, 512, 3, padding=1) print("GFLOPs of 3x3 conv: {:.1f}".format(c_conv / 1000**3))
时间: 2024-05-28 18:08:51 浏览: 50
这段代码定义了一个 3x3 卷积层的计算量,其中的参数含义为输入特征图的大小、输出特征图的通道数、卷积核的大小和填充大小。c_conv / 1000**3 计算了卷积层的浮点运算量(GFLOPs),并且通过字符串格式化输出。如果将 H 和 W 替换为输入特征图 H 和 W 的实际大小,则可以计算该层在实际输入下的计算量。
相关问题
解释一下这段代码def __init__(self, channels, use_conv, dims=2, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
这段代码是一个类的初始化函数,它有四个参数:channels、use_conv、dims和out_channels。其中,channels表示输入数据的通道数,out_channels表示输出数据的通道数,如果没有指定out_channels,则默认与channels相同。use_conv表示是否使用卷积操作,dims表示数据的维度,可以是1、2或3。如果use_conv为True,则会创建一个卷积层,使用conv_nd函数创建,卷积核大小为3,padding为1。
class AttU_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(AttU_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) self.sigmoid = nn.Sigmoid()
这段代码定义了一个名为AttU_Net的PyTorch模型。它是一个基于U-Net的改进模型,用于图像分割任务。模型的输入通道数为img_ch,输出通道数为output_ch。
在初始化函数中,首先定义了一个MaxPool2d层,用于下采样操作。
接下来,通过conv_block函数定义了五个卷积块(self.Conv1到self.Conv5),每个卷积块包含一个卷积层和批归一化层。
然后,定义了四个上采样操作(self.Up5到self.Up2),每个上采样操作包含一个上采样层和一个卷积块。
在每个上采样操作后,使用Attention_block模块(self.Att5到self.Att2)对特征图进行注意力计算。
最后,通过一个1x1的卷积层(self.Conv_1x1)将通道数变为output_ch,并使用Sigmoid函数进行输出。
这个AttU_Net模型的设计主要是在U-Net的基础上添加了注意力机制,以提升分割性能。
阅读全文