javacv识别车牌完整过程
时间: 2023-10-11 08:06:08 浏览: 69
JavaCV可以用于车牌的识别,下面是一般的车牌识别的完整过程:
1. 车牌定位:通过图像处理方法,如图像分割、形态学操作、边缘检测等,找到图像中的车牌位置。
2. 车牌字符分割:将车牌中的字符分割出来,一般使用像素投影法、连通区域法、基于轮廓的分割等方法。
3. 字符识别:对于每个字符,使用图像处理算法进行预处理,如二值化、去噪、字符归一化等,然后使用OCR技术进行字符识别。
4. 字符序列的识别:对于识别出来的字符序列,使用车牌号码的规则进行校验,如校验位的计算、省份简称的识别等。
5. 输出结果:将识别出来的车牌号码和识别结果输出到屏幕或数据库中。
以上是一般车牌识别的完整过程,具体的实现方法可以根据实际情况进行调整和优化。
相关问题
javacv识别车牌实现
使用JavaCV识别车牌可以分为以下几个步骤:
1. 加载图像:使用OpenCV加载车牌图像。
2. 车牌定位:使用图像处理技术定位车牌区域。一般的方法是使用形态学处理和轮廓检测。
3. 车牌字符分割:使用垂直投影法或者基于连通域的方法对车牌字符进行分割。
4. 车牌字符识别:使用OCR技术对分割出来的字符进行识别。常用的OCR引擎有Tesseract-OCR和AipOcr等。
以下是一个简单的代码示例:
```java
import static org.bytedeco.javacpp.opencv_core.*;
import static org.bytedeco.javacpp.opencv_highgui.*;
import static org.bytedeco.javacpp.opencv_imgproc.*;
public class LicensePlateRecognizer {
public static void main(String[] args) {
// 读取车牌图像
Mat src = imread("license_plate.jpg");
// 车牌定位
Mat gray = new Mat();
cvtColor(src, gray, COLOR_BGR2GRAY);
Mat binary = new Mat();
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
Mat kernel = getStructuringElement(MORPH_RECT, new Size(3, 3));
morphologyEx(binary, binary, MORPH_OPEN, kernel);
Mat contours = new Mat();
findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Rect roi = null;
for (int i = 0; i < contours.size().height(); i++) {
Rect rect = boundingRect(contours.row(i));
if (rect.width() > rect.height() * 2 && rect.width() < src.size().width() * 0.8 && rect.height() > src.size().height() * 0.1) {
roi = rect;
break;
}
}
if (roi == null) {
System.out.println("未找到车牌");
return;
}
Mat plate = new Mat(src, roi);
// 车牌字符分割
cvtColor(plate, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Mat result = new Mat();
int i = 0;
for (int j = 0; j < contours.size().height(); j++) {
Rect rect = boundingRect(contours.row(j));
if (rect.width() > 10 && rect.height() > 20) {
Mat character = new Mat(gray, rect);
resize(character, character, new Size(20, 20));
character.convertTo(character, CV_32FC1);
result.push_back(character.reshape(1, 1));
}
}
// 车牌字符识别
String[] labels = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"};
Mat labelsMat = new Mat(labels.length, 1, CV_32FC1);
for (int j = 0; j < labels.length; j++) {
labelsMat.put(j, 0, j);
}
KNearest knn = KNearest.create();
knn.train(result, ROW_SAMPLE, labelsMat);
Mat test = new Mat();
resize(gray, test, new Size(120, 30));
test.convertTo(test, CV_32FC1);
Mat response = new Mat();
knn.findNearest(test.reshape(1, 1), 3, response);
int label = (int) response.get(0, 0)[0];
System.out.println("识别结果:" + labels[label]);
}
}
```
这是一个简单的识别车牌的示例,实际应用中还需要考虑更多的情况,比如光照条件、车牌颜色等因素对识别的影响。
创建javacv识别车牌实现项目
要创建一个基于javacv的车牌识别项目,需要以下步骤:
1. 下载和安装OpenCV和javacv库
2. 导入javacv库到项目中,并添加到项目类路径下
3. 从视频或摄像头中获取图像帧
4. 对图像进行车牌检测和识别的预处理,包括图像灰度化、二值化、滤波等操作
5. 利用形态学运算处理车牌区域,去除不必要的细节和噪点
6. 对车牌字符进行分割,提取每个字符图像,并对每个字符进行识别
7. 将识别出的车牌字符组合成完整的车牌号码
以下是一个简单的代码示例,用于从摄像头获取图像并进行车牌识别:
```java
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_imgcodecs;
import org.bytedeco.javacpp.opencv_imgproc;
import org.bytedeco.javacpp.opencv_videoio;
import org.bytedeco.javacpp.indexer.UByteIndexer;
public class LicensePlateRecognition {
public static void main(String[] args) {
// 初始化摄像头
opencv_videoio.VideoCapture camera = new opencv_videoio.VideoCapture(0);
// 读取模板图像
opencv_core.Mat templateImg = opencv_imgcodecs.imread("template.jpg");
while (true) {
// 从摄像头获取图像帧
opencv_core.Mat frame = new opencv_core.Mat();
camera.read(frame);
// 转换为灰度图像
opencv_core.Mat gray = new opencv_core.Mat();
opencv_imgproc.cvtColor(frame, gray, opencv_imgproc.COLOR_BGR2GRAY);
// 二值化
opencv_core.Mat binary = new opencv_core.Mat();
opencv_imgproc.threshold(gray, binary, 0, 255, opencv_imgproc.THRESH_BINARY_INV | opencv_imgproc.THRESH_OTSU);
// 形态学运算处理车牌区域
opencv_core.Mat kernel = opencv_imgproc.getStructuringElement(opencv_imgproc.MORPH_RECT, new opencv_core.Size(3, 3));
opencv_core.Mat morph = new opencv_core.Mat();
opencv_imgproc.morphologyEx(binary, morph, opencv_imgproc.MORPH_CLOSE, kernel);
// 查找轮廓
opencv_core.Mat contoursImg = frame.clone();
opencv_core.Mat contours = new opencv_core.Mat();
opencv_imgproc.findContours(morph, contours, new opencv_core.Mat(), opencv_imgproc.RETR_EXTERNAL, opencv_imgproc.CHAIN_APPROX_SIMPLE);
// 遍历轮廓,找到车牌区域
opencv_core.Rect plateRect = null;
for (int i = 0; i < contours.size(); i++) {
opencv_core.Mat contour = contours.get(i);
double area = opencv_imgproc.contourArea(contour);
if (area > 1000 && area < 10000) {
opencv_core.Rect rect = opencv_imgproc.boundingRect(contour);
double ratio = (double) rect.width() / rect.height();
if (ratio > 2 && ratio < 5) {
plateRect = rect;
opencv_imgproc.rectangle(contoursImg, plateRect, new opencv_core.Scalar(0, 255, 0), 2);
}
}
}
// 如果找到车牌区域
if (plateRect != null) {
// 提取车牌图像
opencv_core.Mat plateImg = gray.apply(plateRect);
// 调整车牌图像大小
opencv_core.Mat resizedPlateImg = new opencv_core.Mat();
opencv_imgproc.resize(plateImg, resizedPlateImg, new opencv_core.Size(136, 36));
// 与模板图像进行比对,找到最佳匹配的字符
int[] matchResults = new int[10];
for (int i = 0; i < 10; i++) {
opencv_core.Mat templateChar = templateImg.apply(new opencv_core.Rect(i * 14, 0, 14, 36));
opencv_core.Mat charImg = resizedPlateImg.apply(new opencv_core.Rect(i * 14, 0, 14, 36));
opencv_core.Mat diff = new opencv_core.Mat();
opencv_core.absdiff(templateChar, charImg, diff);
UByteIndexer diffIndexer = diff.createIndexer();
int matchValue = 0;
for (int y = 0; y < diff.rows(); y++) {
for (int x = 0; x < diff.cols(); x++) {
matchValue += diffIndexer.get(y, x);
}
}
matchResults[i] = matchValue;
}
// 组合车牌号码
StringBuilder plateNumberBuilder = new StringBuilder();
for (int i = 0; i < 10; i++) {
int minMatchValue = Integer.MAX_VALUE;
int minMatchIndex = -1;
for (int j = 0; j < 10; j++) {
if (matchResults[j] < minMatchValue) {
minMatchValue = matchResults[j];
minMatchIndex = j;
}
}
if (minMatchValue < 5000) {
plateNumberBuilder.append(minMatchIndex);
} else {
plateNumberBuilder.append("*");
}
matchResults[minMatchIndex] = Integer.MAX_VALUE;
}
String plateNumber = plateNumberBuilder.toString();
// 在图像上显示车牌号码
opencv_core.Point textPosition = new opencv_core.Point(plateRect.x(), plateRect.y() - 10);
opencv_imgproc.putText(contoursImg, plateNumber, textPosition, opencv_imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new opencv_core.Scalar(0, 0, 255), 2);
}
// 显示图像
opencv_imgcodecs.imshow("Camera", contoursImg);
opencv_imgcodecs.waitKey(1);
}
}
}
```
代码中使用了一个名为template.jpg的模板图像,其中包含了所有数字字符的样本图像。程序从摄像头获取图像帧,并对图像进行车牌检测和识别的预处理,然后进行形态学运算处理车牌区域,最后提取车牌字符并进行识别,将识别出的车牌字符组合成完整的车牌号码,并在图像上显示车牌号码。
阅读全文