Tensor("loss/Mean:0", shape=(), dtype=float32)
时间: 2024-05-25 13:19:34 浏览: 71
This is a TensorFlow tensor object that represents the mean loss value of a model during training. The tensor has a shape of (), which indicates that it is a scalar value (i.e., a single number). The data type of the tensor is float32, which means that it represents a floating-point number with 32 bits of precision. The tensor is named "Mean" because it represents the average (mean) of the loss values calculated for each training example in a batch. The "loss" part of the name indicates that this tensor is related to the loss function used in the model, which measures the difference between the predicted output and the actual output.
相关问题
from data_process import get_data import torch from sklearn.model_selection import train_test_split from LeNet5 import LeNet5 X, y = get_data() # 获取数据【0.025,0.035】100*0.2 = 20 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y) # 数据拆分 print(X_train.shape) #(1075, 227, 227, 1) 0 1 2 3 --- (1075, 1, 227, 227) 0 3 1 2 X_train_tensor = torch.tensor(X_train, dtype=torch.float32).permute(0, 3, 1, 2) # 将数据转成模型要求的形式 print(X_train_tensor.shape) X_test_tensor = torch.tensor(X_test, dtype=torch.float32).permute(0, 3, 1, 2) y_train_tensor = torch.tensor(y_train, dtype=torch.int64) train_ds = torch.utils.data.TensorDataset(X_train_tensor, y_train_tensor) # 将数据转为tensordata类型 train_dl = torch.utils.data.DataLoader(train_ds, batch_size=128, shuffle=True) # 对数据进行分批及打乱操作 network = LeNet5() # 实例化得到一个leNet-5网络模型 loss_fn = torch.nn.CrossEntropyLoss() # 损失函数(交差熵) optimizer = torch.optim.SGD(network.parameters(), lr=0.01) # 优化器 # 模型训练 for epoch in range(1): for image, label in train_dl: y_pre = network(image) # 模型计算(前向传播) loss = loss_fn(y_pre, label) # 计算损失值 network.zero_grad() # 将网络中的所有梯度清零 loss.backward() # 计算梯度项(反向求导) optimizer.step() # 参数优化(模型训练) print('第{}轮训练,当前批次的训练损失值为:{}'.format(epoch, loss.item())) predicted = network(X_test_tensor) # 模型预测 result = predicted.data.numpy().argmax(axis=1) # 预测标签 acc_test = (result == y_test).mean() # 模型测试精度 print(acc_test) torch.save(network.state_dict(), 'leNet5-1.pt') # 保存模型参数
这段代码是一个使用PyTorch框架实现的LeNet-5卷积神经网络模型的训练和测试过程。代码主要分为以下几个部分:
1. 数据准备部分:使用`get_data`函数获取数据,然后使用`train_test_split`将数据集划分为训练集和测试集,并将数据转换成模型要求的格式;
2. 模型定义部分:实例化一个LeNet-5网络模型;
3. 损失函数和优化器的定义:定义交叉熵损失函数和SGD优化器;
4. 模型训练部分:使用DataLoader对训练集进行批处理和打乱操作,并进行多轮迭代训练,每一轮迭代都计算一次损失值和梯度,并使用优化器更新参数;
5. 模型测试部分:使用测试集进行模型测试,并计算测试精度;
6. 模型参数保存部分:使用`torch.save`函数保存训练好的模型参数。
如果您有任何问题或需要进一步解释,请随时提出。
def grad_cam(img, imgs0, end_points, sess, predicted_class, layer_name, nb_classes, eval_image_size): # Conv layer tensor [?,10,10,2048] conv_layer = end_points[layer_name] # [1000]-D tensor with target class index set to 1 and rest as 0 one_hot = tf.sparse_to_dense(predicted_class, [nb_classes], 1.0) signal = tf.multiply(end_points[_logits_name], one_hot) loss = tf.reduce_mean(signal) grads = tf.gradients(loss, conv_layer)[0] # Normalizing the gradients norm_grads = tf.divide(grads, tf.sqrt(tf.reduce_mean(tf.square(grads))) + tf.constant(1e-5)) output, grads_val = sess.run([conv_layer, norm_grads], feed_dict={imgs0: img}) output = output[0] # [10,10,2048] grads_val = grads_val[0] # [10,10,2048] weights = np.mean(grads_val, axis = (0, 1)) # [2048] cam = np.ones(output.shape[0 : 2], dtype = np.float32) # [10,10] # Taking a weighted average for i, w in enumerate(weights): cam += w * output[:, :, i] # Passing through ReLU cam = np.maximum(cam, 0) cam = cam / np.max(cam) cam3 = cv2.resize(cam, (eval_image_size,eval_image_size)) return cam3
这是一个用于生成Grad-CAM的函数。它需要一个输入图像img、一组参考图像imgs0、模型的中间层特征图end_points、会话sess、预测的类别predicted_class、目标层的名称layer_name、类别数nb_classes以及评估图像的尺寸eval_image_size。函数将提取目标层的特征图,并计算出每个特征图对目标类别的重要性,生成Grad-CAM图像。
阅读全文