distance_discrimination <- function(train_data, train_group, new_data) { n_train <- nrow(train_data) n_features <- ncol(train_data) group_levels <- unique(train_group) n_groups <- length(group_levels) means <- matrix(0, n_groups, n_features) # 计算各组的均值 for (i in 1:n_groups) { means[i,] <- colMeans(train_data[train_group == group_levels[i],]) } # 计算各组的协方差矩阵 covs <- list() for (i in 1:n_groups) { covs[[i]] <- cov(train_data[train_group == group_levels[i],]) } # 计算马氏距离 distances <- matrix(0, nrow(new_data), n_groups) for (i in 1:n_groups) { distances[,i] <- mahalanobis(new_data, means[i,], covs[[i]]) } # 返回分类结果 group_levels[apply(distances, 1, which.min)] } #数据两组数据,两个属性x,y,标签为"A","B" x1 <- c(1, 2, 3, 4, 5) y1 <- c(1, 2, 1, 2, 1) x2 <- c(10, 11, 12, 13, 14) y2 <- c(10, 9, 10, 9, 10) train_data <- rbind(cbind(x1, y1), cbind(x2, y2)) train_group <- c("A","A","A","A","A","B","B","B","B","B") new_data <- cbind(c(3, 5, 11, 13), c(1, 1, 9, 10)) # 使用距离判别函数进行分类 distance_discrimination(train_data, train_group, new_data)解释一下代码
时间: 2024-02-29 10:55:18 浏览: 67
psctddne.zip_Audio Filter GUI_edar algorithm
这段代码实现了一个基于马氏距离的距离判别函数,用于对新数据进行分类。具体实现过程如下:
1. 读入训练数据 train_data,训练数据标签 train_group,以及新数据 new_data。
2. 计算训练数据中每个标签组的均值和协方差矩阵。
3. 对于新数据 new_data,分别计算其到每个标签组的马氏距离。
4. 返回距离最小的标签组作为分类结果。
其中,计算马氏距离需要用到每个标签组的均值和协方差矩阵,这些信息可以通过训练数据 train_data 和 train_group 计算得到。距离判别函数的核心就是计算马氏距离,这个距离考虑了各个属性之间的相关性,因此比欧式距离更具有区分性。
在这个例子中,训练数据中有两个标签组,分别为"A"和"B",每个标签组有两个属性 "x" 和 "y"。新数据包含了四个样本,分别为 (3, 1), (5, 1), (11, 9), (13, 10),程序运行后将会输出对应的分类结果。
阅读全文