利用spark将mysql同步数据到hudi提供详细java代码案例
时间: 2023-12-14 08:05:22 浏览: 203
以下是一个基本的Java代码示例,用于将MySQL中的数据同步到Hudi:
```java
import org.apache.hudi.DataSourceWriteOptions;
import org.apache.hudi.HoodieSparkUtils;
import org.apache.hudi.OverwriteWithLatestAvroPayload;
import org.apache.hudi.QuickstartUtils;
import org.apache.hudi.api.HoodieWriteClient;
import org.apache.hudi.common.model.HoodieTableType;
import org.apache.hudi.config.HoodieWriteConfig;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import java.util.Collections;
import java.util.Properties;
public class MySQLToHudiSync {
public static void main(String[] args) {
String tableName = "hudi_table";
String basePath = "file:///tmp/hudi_table";
String jdbcUrl = "jdbc:mysql://<mysql_host>:<mysql_port>/<mysql_db>";
String username = "<mysql_username>";
String password = "<mysql_password>";
String partitionKey = "id";
String hudiTableType = HoodieTableType.COPY_ON_WRITE.name();
SparkSession spark = SparkSession.builder().appName("MySQLToHudiSync").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").getOrCreate();
JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
Properties connectionProperties = new Properties();
connectionProperties.put("user", username);
connectionProperties.put("password", password);
Dataset<Row> jdbcDF = spark.read().jdbc(jdbcUrl, tableName, connectionProperties);
JavaRDD<Row> rowsRDD = jdbcDF.javaRDD();
HoodieWriteConfig hoodieWriteConfig = HoodieWriteConfig.newBuilder().withPath(basePath)
.withSchema(QuickstartUtils.getSchema()).withParallelism(2, 2)
.withBulkInsertParallelism(3).withFinalizeWriteParallelism(2)
.withStorageConfig(HoodieSparkUtils.getDefaultHoodieConf(jsc.hadoopConfiguration()))
.withAutoCommit(false).withTableType(hudiTableType)
.forTable(tableName).withIndexConfig(HoodieIndexConfig.newBuilder().withIndexType(HoodieIndex.IndexType.BLOOM).build())
.withProps(Collections.singletonMap(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY().key(), partitionKey)).build();
HoodieWriteClient hoodieWriteClient = new HoodieWriteClient<>(jsc, hoodieWriteConfig);
hoodieWriteClient.upsert(rowsRDD.map(row -> {
String key = row.getAs(partitionKey).toString();
return new UpsertPOJO(key, row);
}), hoodieWriteConfig.getBasePath(), hoodieWriteConfig.getTableType(), OverwriteWithLatestAvroPayload.class.getName());
hoodieWriteClient.commit();
}
public static class UpsertPOJO implements Serializable {
private String key;
private Row row;
public UpsertPOJO(String key, Row row) {
this.key = key;
this.row = row;
}
public String getKey() {
return key;
}
public void setKey(String key) {
this.key = key;
}
public Row getRow() {
return row;
}
public void setRow(Row row) {
this.row = row;
}
}
}
```
代码中的`tableName`是要同步的MySQL表的名称,`basePath`是Hudi表的根路径。`jdbcUrl`,`username`和`password`是连接MySQL所需的凭据。`partitionKey`是Hudi表中用作分区键的字段名称。`hudiTableType`是Hudi表的类型,可以是`COPY_ON_WRITE`或`MERGE_ON_READ`。
代码中使用`HoodieWriteConfig`对象配置Hudi写入选项,例如`withPath`,`withSchema`,`withParallelism`,`withBulkInsertParallelism`等。`forTable`方法指定Hudi表的名称。`withIndexConfig`方法配置Hudi索引选项,例如索引类型和配置。`withProps`方法设置自定义属性。`withAutoCommit`方法用于控制提交方式,可以是自动提交或手动提交。
最后,使用`HoodieWriteClient`对象将MySQL数据插入Hudi表,使用`upsert`方法进行插入。`UpsertPOJO`类是自定义的POJO类,用于将MySQL中的行转换为要插入到Hudi表中的数据。`commit`方法用于提交更改。
请注意,此代码示例仅用于演示目的,并且可能需要进行修改以适应您的特定需求。
阅读全文