hog+svm和深度学习进行行人检测相比优势在哪里

时间: 2023-11-13 16:05:06 浏览: 112
相比于HOG+SVM方法,深度学习在行人检测领域具有以下优势: 1. 更高的检测准确率:深度学习模型可以学习更为复杂的特征表示,从而提高行人检测的准确率。相较于HOG+SVM方法,深度学习模型可以自动学习更丰富的特征表示,避免了手工设计特征的繁琐过程。 2. 更强的泛化能力:深度学习模型能够处理不同尺度、不同角度、不同光照等多种情况下的行人检测任务,具有更强的泛化能力。 3. 更快的检测速度:深度学习模型采用GPU等硬件加速可以实现快速的行人检测,而且可以通过模型压缩等方法减少模型大小和计算量,提高检测速度。 4. 端到端的学习:深度学习模型可以直接从原始图像中学习行人检测任务,实现端到端的学习,避免了多个模块之间的耦合和参数调整。 综上所述,深度学习方法在行人检测领域具有更高的准确率、更强的泛化能力、更快的检测速度和更为灵活的模型设计,是当前行人检测领域的主流方法。
相关问题

hog+svm+cascade实现行人检测为什么比深度学习好

HOG+SVM+Cascade是一种基于传统机器学习方法的行人检测算法,与深度学习方法相比,其优势主要在于以下几个方面: 1. 训练时间更短:HOG+SVM+Cascade算法的训练时间相对于深度学习方法而言更短,因为它不需要大量的样本和计算资源。 2. 模型更小:相对于深度学习方法,HOG+SVM+Cascade算法的模型更小,因为它不需要大量的参数和计算资源。 3. 更好的解释性:HOG+SVM+Cascade算法的模型结构较为简单,可以更好地解释模型的输出结果,有利于理解算法的原理和改进算法效果。 4. 更强的鲁棒性:HOG+SVM+Cascade算法在处理复杂场景时相对于深度学习方法更具有鲁棒性,因为它不容易受到背景噪声、光线变化等干扰。 5. 更好的隐私保护:HOG+SVM+Cascade算法不需要大量的数据集和计算资源,更加适合于保护个人隐私的场景。 总的来说,HOG+SVM+Cascade算法在一些特定场景下比深度学习方法更为适用,但是深度学习方法在大规模数据集和计算资源充足的情况下可以取得更好的效果。因此,在实际应用中需要根据具体情况选择合适的算法。

opencvpathon HOG+SVM+NMS实现行人检测。

使用HOG+SVM+NMS算法实现行人检测可以达到更准确的结果。以下是一些基本步骤: 1.导入OpenCV库并读取视频文件 ```python import cv2 cap = cv2.VideoCapture('video.mp4') ``` 2.设置HOG描述符和SVM分类器 ```python hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) ``` 3.在视频帧中进行行人检测 ```python while True: ret, frame = cap.read() if not ret: break bodies, weights = hog.detectMultiScale(frame, winStride=(8, 8), padding=(32, 32), scale=1.05) for i, (x, y, w, h) in enumerate(bodies): for j, (x_, y_, w_, h_) in enumerate(bodies): if i != j and weights[i] < weights[j] and abs(x+w/2 - x_ - w_/2) < w+w_ and abs(y+h/2 - y_ - h_/2) < h+h_: break else: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 在上面的代码中,`HOGDescriptor`类提供了计算HOG描述符的方法,并且使用`setDefaultPeopleDetector`函数设置了SVM分类器。`detectMultiScale`函数用于检测行人,该函数可以设置一些参数,如`winStride`、`padding`和`scale`等,以调整检测的精度和速度。在检测到行人后,使用`rectangle`函数在视频帧中绘制矩形框。 请注意,以上代码仅提供了一个基本的行人检测示例,如果需要更准确的结果,你可能需要使用更复杂的算法和技术,例如深度学习模型。

相关推荐

最新推荐

recommend-type

HOG+SVM行人检测算法

行人检测是计算机视觉领域的重要任务,特别是在智能交通、安全监控和自动...在实际应用中,通过调整参数、优化训练过程,以及结合其他技术,如深度学习模型,HOG+SVM可以进一步提升行人检测的性能,满足各种实际需求。
recommend-type

关于车辆识别算法和行人识别算法 特征提取.doc

尽管近年来出现了许多新型的行人检测算法,如深度学习模型,但HOG+SVM的基本思路仍然在行人检测领域占有一席之地,因其简洁、高效且理解性强。 总的来说,HOG特征在车辆识别和行人识别中扮演了核心角色,其原理和...
recommend-type

Python 使用Opencv实现目标检测与识别的示例代码

总的来说,OpenCV结合HOG特征和SVM(Support Vector Machines,支持向量机)为我们提供了一个简单的行人检测解决方案。然而,为了达到更复杂和精确的目标检测任务,开发者往往需要转向深度学习技术,利用预训练的...
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【深度优先搜索】:Python算法面试的黄金钥匙

# 1. 深度优先搜索(DFS)概述 ## 1.1 深度优先搜索简介 深度优先搜索(DFS)是一种用于遍历或搜索树或图的算法。这种算法沿着树的深度遍历树的节点,尽可能深地搜索树的分支。当节点v的所有出边都被探寻过之后,搜索将回溯到发现节点v的那条边的起始节点。这种机制允许DFS解决多种类型的问题,例如寻找两个节点之间的路径、检测图中环的存在以及在计算机网络中进行拓扑排序等。 ## 1.2 深度优先搜索的特性 DFS最显著的特点是它的非形式化和直觉性的操作方式,它不需要额外的数据结构如优先队列来支持操作。相比于广度优先搜索,DFS在解决一些需要回溯和搜索深度较大分支的问题时更为高效。由于DF