用pytorch写一个DeepLab v3+网络完整代码,并用金字塔卷积模块替换其中的DCNN模块,最后解释如何使用这个网络
时间: 2023-02-24 21:49:55 浏览: 169
以下是用PyTorch写的一个DeepLab v3 网络完整代码,使用金字塔卷积模块替换了原本的DCNN模块:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class PyramidPoolingModule(nn.Module):
def __init__(self, in_channels, pool_sizes):
super(PyramidPoolingModule, self).__init__()
self.pool_sizes = pool_sizes
self.avg_pools = nn.ModuleList()
for size in pool_sizes:
self.avg_pools.append(nn.AdaptiveAvgPool2d(size))
def forward(self, x):
pools = [pool(x) for pool in self.avg_pools]
pools = [F.interpolate(pool, size=(x.size(-2), x.size(-1)), mode='bilinear', align_corners=True) for pool in pools]
out = torch.cat(pools, dim=1)
return out
class DeepLabv3(nn.Module):
def __init__(self, num_classes=21):
super(DeepLabv3, self).__init__()
self.backbone = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(128, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(256, 512, 3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(512, 512, 3, padding=1),
nn.BatchNorm2d(512),
阅读全文