last_data = data[-look_back:] # 将数据转换为三维数组 last_data = np.reshape(last_data, (1, 1, look_back)) # 预测未来两天的气温 prediction = model.predict(last_data)怎么把他改写成接连两次预测未来一天数据

时间: 2023-06-15 16:08:22 浏览: 56
可以将代码修改为以下形式: ``` # 预测未来一天的气温 last_data = data[-look_back:] last_data = np.reshape(last_data, (1, 1, look_back)) prediction1 = model.predict(last_data) # 将预测结果加入原始数据中,用于接下来的第二次预测 data = np.append(data, prediction1) # 预测未来第二天的气温 last_data = data[-look_back:] last_data = np.reshape(last_data, (1, 1, look_back)) prediction2 = model.predict(last_data) ``` 这样,首先进行一次预测,得到未来第一天的气温预测结果 `prediction1`,然后将其加入原始数据中,用于接下来的第二次预测。接着再进行一次预测,得到未来第二天的气温预测结果 `prediction2`。
相关问题

import pandas as pd data = pd.read_csv('gdpcost.csv') import numpy as np from sklearn.model_selection import train_test_split # 将数据拆分成训练集和测试集 train_data, test_data, train_labels, test_labels = train_test_split(data['GDP'].values, data['Cost'].values, test_size=0.2) # 将数据转换为 NumPy 数组并进行标准化处理 train_data = (train_data - np.mean(train_data)) / np.std(train_data) test_data = (test_data - np.mean(train_data)) / np.std(train_data) train_labels =(train_labels - np.mean(train_labels)) / np.std(train_labels) test_labels= (test_labels - np.mean(train_labels)) / np.std(train_labels) # 将数据转换为 NumPy 数组并进行重塑 train_data = train_data.reshape(-1, 1) test_data = test_data.reshape(-1, 1) train_labels = train_labels.reshape(-1, 1) test_labels = test_labels.reshape(-1, 1) from keras.models import Sequential from keras.layers import Dense # 定义模型 model = Sequential() model.add(Dense(10, activation='relu', input_shape=(1,))) model.add(Dense(1)) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(train_data, train_labels, epochs=100, batch_size=32) # 评估模型 loss = model.evaluate(test_data, test_labels) print('Test loss:', loss)请解释每行代码

1. `import pandas as pd`:导入 pandas 库并给它取别名 pd。 2. `data = pd.read_csv('gdpcost.csv')`:从 CSV 文件中读取数据并将其存储在名为 data 的 pandas DataFrame 中。 3. `import numpy as np`:导入 numpy 库并给它取别名 np。 4. `from sklearn.model_selection import train_test_split`:从 sklearn 库中导入 train_test_split 方法,用于拆分数据集成训练集和测试集。 5. `train_data, test_data, train_labels, test_labels = train_test_split(data['GDP'].values, data['Cost'].values, test_size=0.2)`:将 GDP 和 Cost 数据列从 data 中提取出来,并将它们拆分成训练集和测试集。拆分比例为 8:2。 6. `train_data = (train_data - np.mean(train_data)) / np.std(train_data)`:将训练集数据进行标准化处理,即将数据减去平均值并除以标准差。 7. `test_data = (test_data - np.mean(train_data)) / np.std(train_data)`:将测试集数据进行标准化处理,使用训练集数据的平均值和标准差。 8. `train_labels =(train_labels - np.mean(train_labels)) / np.std(train_labels)`:将训练集标签进行标准化处理。 9. `test_labels= (test_labels - np.mean(train_labels)) / np.std(train_labels)`:将测试集标签进行标准化处理,使用训练集标签的平均值和标准差。 10. `train_data = train_data.reshape(-1, 1)`:将训练集数据重塑为一个列向量。 11. `test_data = test_data.reshape(-1, 1)`:将测试集数据重塑为一个列向量。 12. `train_labels = train_labels.reshape(-1, 1)`:将训练集标签重塑为一个列向量。 13. `test_labels = test_labels.reshape(-1, 1)`:将测试集标签重塑为一个列向量。 14. `from keras.models import Sequential`:从 keras 库中导入 Sequential 模型。 15. `from keras.layers import Dense`:从 keras 库中导入 Dense 层,用于定义神经网络的层结构。 16. `model = Sequential()`:创建一个 Sequential 模型实例。 17. `model.add(Dense(10, activation='relu', input_shape=(1,)))`:向模型中添加一个具有 10 个神经元和 ReLU 激活函数的全连接层,并指定输入的形状为 (1,)。 18. `model.add(Dense(1))`:向模型中添加一个具有 1 个神经元的输出层。 19. `model.compile(optimizer='adam', loss='mse')`:编译模型并指定优化器为 Adam,损失函数为均方误差(MSE)。 20. `model.fit(train_data, train_labels, epochs=100, batch_size=32)`:使用训练集数据和标签对模型进行训练,训练次数为 100 次,批量大小为 32。 21. `loss = model.evaluate(test_data, test_labels)`:使用测试集数据和标签评估模型的性能,返回损失值。 22. `print('Test loss:', loss)`:输出测试集的损失值。

normalize_data = normalize_data[:, np.newaxis] # 增加维度

### 回答1: normalize_data = normalize_data[:, np.newaxis] 是一行代码,用于对数据进行维度变换的操作。 其中,normalize_data 是一个二维的数据矩阵,每一行代表一个样本,每一列代表该样本的一个特征。而 normalize_data[:, np.newaxis] 则是将这个二维矩阵的每个元素都添加一个新的维度。 该操作的作用是将原本的二维矩阵变成三维矩阵,其中两个维度与原矩阵保持一致,而新增加的维度则包含原矩阵的每个元素。 这样做的目的可以有多种,一种常见的情况是为了在进行某些操作时,如计算特征之间的相关性、进行算法模型的训练等,需要将原来的二维数据在一个新的维度上进行拓展。 具体来说,np.newaxis 可以理解为在原矩阵的每个元素上创建一个新的坐标轴。通过这个操作,可以方便地对数据进行进一步的处理和分析。 需要注意的是,np.newaxis 是一个常用的向量操作函数,它并不是一个新的单独的维度,而是作为一个索引指令被传递给 NumPy 的数组对象。 ### 回答2: normalize_data = normalize_data[:, np.newaxis] 的作用是将数据中的每个元素变成一个一维的数组,并且在行的维度上增加一个新的维度。这样做的结果是原来的一维数组变成了一个二维数组。 例如,假设 normalize_data 是一个一维数组 [1, 2, 3, 4]。使用 normalize_data[:, np.newaxis] 就会将这个数组变成一个二维数组: [[1] [2] [3] [4]] 新的数组有四行一列,每个元素都被放在了一个单独的一维数组中。 这种操作常用于机器学习和数据分析中。在一些算法中,为了处理一维数据集,需要将其转换为二维数组。而使用 np.newaxis 可以方便地实现这个转换。另外,这种转换也可以在进行数据处理和特征工程时使用,以便更好地适应不同算法和模型的要求。 ### 回答3: normalize_data = normalize_data[:, np.newaxis] 的作用是将一维的数据 normalize_data 变为二维的数据。 其中 normalize_data 是一个一维数组,[:, np.newaxis] 表示将其在列方向上进行切片,即将每个元素变为一个包含一个元素的一维数组,最终形成一个二维数组。 举例说明,假设 normalize_data = [1, 2, 3],那么 normalize_data[:, np.newaxis] 的结果就是一个形状为 (3, 1) 的二维数组。 [[1] [2] [3]] 这样做的目的是为了方便进行一些涉及矩阵计算的操作。通过将一维数组转换为二维数组,我们可以方便地进行矩阵的乘法、加法等运算。 在机器学习中,常常需要对数据进行预处理,其中一项常见的预处理操作就是数据的归一化。通过将数据标准化到一定的范围内,可以避免数据的尺度差异对模型训练和预测的结果造成影响。normalize_data = normalize_data[:, np.newaxis] 通常在数据归一化的过程中使用,将一维的数据 reshape 为二维的数据,以便可以方便地进行标准化操作。

相关推荐

import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.metrics import r2_score,median_absolute_error,mean_absolute_error # 读取数据 data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据rnn.csv') # 取出特征参数 X = data.iloc[:,2:].values # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) X[:, 0] = scaler.fit_transform(X[:, 0].reshape(-1, 1)).flatten() #X = scaler.fit_transform(X) #scaler.fit(X) #X = scaler.transform(X) # 划分训练集和测试集 train_size = int(len(X) * 0.8) test_size = len(X) - train_size train, test = X[0:train_size, :], X[train_size:len(X), :] # 转换为监督学习问题 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back - 1): a = dataset[i:(i + look_back), :] X.append(a) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 12 X_train, Y_train = create_dataset(train, look_back) #Y_train = train[:, 2:] # 取第三列及以后的数据 X_test, Y_test = create_dataset(test, look_back) #Y_test = test[:, 2:] # 取第三列及以后的数据 # 转换为3D张量 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(X_train, Y_train, epochs=5, batch_size=32) #model.fit(X_train, Y_train.reshape(Y_train.shape[0], 1), epochs=10, batch_size=32) # 预测下一个月的销量 last_month_sales = data.tail(12).iloc[:,2:].values #last_month_sales = data.tail(1)[:,2:].values last_month_sales = scaler.transform(last_month_sales) last_month_sales = np.reshape(last_month_sales, (1, look_back, 1)) next_month_sales = model.predict(last_month_sales) next_month_sales = scaler.inverse_transform(next_month_sales) print('Next month sales: %.0f' % next_month_sales[0][0]) # 计算RMSE误差 rmse = np.sqrt(np.mean((next_month_sales - last_month_sales) ** 2)) print('Test RMSE: %.3f' % rmse)IndexError Traceback (most recent call last) Cell In[1], line 36 33 X_test, Y_test = create_dataset(test, look_back) 34 #Y_test = test[:, 2:] # 取第三列及以后的数据 35 # 转换为3D张量 ---> 36 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) 37 X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 38 # 构建LSTM模型 IndexError: tuple index out of range代码修改

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

最新推荐

recommend-type

Python reshape的用法及多个二维数组合并为三维数组的实例

reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变。是对每行元素进行处理 resize(shape) : 与.reshape()功能一致,但修改原数组 In [1]: a = np.arange(20) #原数组不变 In [2]: a.reshape...
recommend-type

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示(毕业设计&课程设计)

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本选课系统开源协议基于GPL协议,仅用作交流学习用途。 本系统采用了前后端分离的开发模式,后端采用Springmvc+Hibernate框架。 前端使用AngularJs+JQuery+Bootstrap开发,并且使用前端构建工具Gulp。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行
recommend-type

linuxjar包启动脚本

Linux中的jar包通常指的是Java Archive(Java归档文件),它是一个包含Java类、资源和其他相关文件的压缩文件。启动一个Java应用的jar包通常涉及到使用Java的Runtime或JVM(Java虚拟机)。 一个简单的Linux启动jar包的脚本(例如用bash编写)可能会类似于这样: ```bash #!/bin/bash # Java启动脚本 # 设置JAVA_HOME环境变量,指向Java安装路径 export JAVA_HOME=/path/to/your/java/jdk # jar包的路径 JAR_FILE=/path/to/your/applicat