def create_dataset(data, days_for_train=5) -> (np.array, np.arr
时间: 2023-05-08 16:55:55 浏览: 208
def create_dataset(data, days_for_train=5) -> (np.array, np.array):
该函数接受两个参数:data和days_for_train。其中data是一个数组,包含了数据集中的所有数据,而days_for_train是指定了用于训练的天数,默认值为5。
函数将原始数据集按照给定的天数划分成不同的训练集和测试集,其中训练集用于训练模型,而测试集用于测试模型的性能。返回值是两个数组,分别表示训练集和测试集。
函数内部首先使用numpy库的reshape函数将原始数据集转换成一个二维的矩阵,并按照给定的天数分割成一个二维的训练集矩阵和一个一维的测试集向量。然后,对训练集矩阵进行归一化处理,使得每一列的数据都在0到1之间。最后,返回两个数组,分别表示归一化后的训练集矩阵和测试集向量。
该函数的返回值可以直接用于训练模型和预测模型在未来一天的走势。在进行模型训练之前,通常需要对数据进行可视化和分析,以便更好地了解数据的特点和规律,从而选取合适的模型进行训练。同时,在应用该函数时,需要根据实际情况调整训练集和测试集的划分,以便提高模型的准确度和泛化性能。
相关问题
def load_dataset(seq_len,batch_size=32): note_arr = np.load("notes_array.npy") _n_notes, _n_durations = note_arr.shape[1:] offset_arr = np.load("offsets_array.npy") _n_offsets = offset_arr.shape[1] note_arr = np.reshape(note_arr, (note_arr.shape[0], -1)) note_data = np.concatenate([note_arr, offset_arr], axis=-1) _n_embeddings = note_data.shape[-1]
这段代码定义了一个名为load_dataset()的函数,用来加载音符和节奏序列数据集。它首先从文件中加载note_arr、offset_arr数组,这两个数组分别表示音符和节奏序列的二维矩阵形式。然后,通过np.concatenate()函数将这两个数组按列合并成一个新的数组note_data,其中每个元素都表示一个音符或节奏的特征向量。接着,通过np.reshape()函数将note_arr数组转换成二维矩阵形式,方便后续处理。最后,该函数返回了经过预处理和划分后的数据集dataset,以及音符、节奏和偏移量的个数n_notes、n_durations和n_offsets,以及嵌入向量的维度n_embeddings。
arr0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr3 = np.array(input("请输入连续24个月的配件销售数据,元素之间用空格隔开:").split(), dtype=float) data_array = np.vstack((arr1, arr3)) data_matrix = data_array.T data = pd.DataFrame(data_matrix, columns=['month', 'sales']) sales = data['sales'].values.astype(np.float32) sales_mean = sales.mean() sales_std = sales.std() sales = abs(sales - sales_mean) / sales_std train_data = sales[:-1] test_data = sales[-12:] def create_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(11, 1))) model.add(layers.Conv1D(filters=32, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=64, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=128, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=256, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=512, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(1, activation='linear')) return model model = create_model() BATCH_SIZE = 16 BUFFER_SIZE = 100 train_dataset = tf.data.Dataset.from_tensor_slices(train_data) train_dataset = train_dataset.window(11, shift=1, drop_remainder=True) train_dataset = train_dataset.flat_map(lambda window: window.batch(11)) train_dataset = train_dataset.map(lambda window: (window[:-1], window[-1:])) train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(1) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') history = model.fit(train_dataset, epochs=100, verbose=0) test_input = test_data[:-1] test_input = np.reshape(test_input, (1, 11, 1)) predicted_sales = model.predict(test_input)[0][0] * sales_std + sales_mean test_prediction = model.predict(test_input) y_test=test_data[1:12] y_pred=test_prediction y_pred = test_prediction.ravel() print("预测下一个月的销量为:", predicted_sales),如何将以下代码稍作修改插入到上面的最后,def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) a=np.array(test_data[label]) real_y=a real_predict=test_predict print("置信水平:{},预测准确率:{}".format(0.2,round(comput_acc(real_y,real_predict,0.2)* 100,2)),"%")
你可以在最后添加如下代码实现 `comput_acc()` 函数的功能:
```
label = 0 # 定义标签
a = np.array(test_data[label]) # 获取测试数据的标签列
real_y = a[1:] # 实际销售数据
real_predict = y_pred[:-1] # 预测销售数据
print("置信水平:{},预测准确率:{}".format(0.2, round(comput_acc(real_y, real_predict, 0.2) * 100, 2)), "%")
```
这段代码的作用是,首先定义标签为 0,即选取测试数据中的第一列数据(即销售数据)。然后,使用 `np.array()` 函数将该列数据转换为 numpy 数组 `a`。接着,将 `a` 中的第二个元素到最后一个元素赋值给 `real_y`,这里是因为真实销售数据的第一个元素已经作为测试数据输入了模型,所以预测值中不包含该元素。然后,将 `y_pred` 中的第一个元素到倒数第二个元素赋值给 `real_predict`,这是因为预测值中的最后一个元素已经与真实值的最后一个元素相对应。最后,调用 `comput_acc()` 函数计算预测准确率,并将结果打印输出。
阅读全文
相关推荐










