解释:y_data = 5 * np.sum(x_data, axis=-1).reshape((-1, 1))

时间: 2023-09-13 10:05:27 浏览: 67
### 回答1: 这个代码的意思是计算x_data的每一行的元素的和,然后将这些和的值按照行的方式放到一个新的数组y_data中,并将每个元素都乘以5。 具体来说,首先会用numpy库中的sum()函数计算x_data每一行的和。sum()函数默认是将x_data中的所有元素求和,但是这里使用了axis=-1参数,表示将每一行的元素求和,然后将结果作为一个一维数组返回。 然后将这个一维数组乘以5,得到一个新的一维数组。最后使用reshape()函数将这个一维数组转换成一个二维数组,行数由参数(-1, 1)中的-1指定,表示自动计算行数。这样y_data就是一个包含x_data每一行和乘以5的二维数组。 ### 回答2: 这段代码表示对于一个二维数据x_data,沿着最后一个维度的方向进行求和,并乘以5,然后对结果进行形状重塑为一个列矩阵。 具体来说,x_data 是一个二维数组,其中包含多个行和列。np.sum(x_data, axis=-1)指的是对x_data的最后一个维度进行求和操作,即对每一行中的所有元素求和。axis=-1表示在最后一个维度上进行求和。 求和操作完成后,得到一个一维数组,其中包含了每一行求和的结果。接下来,通过 np.reshape((-1, 1))将这个一维数组重塑为列矩阵。其中,-1表示根据数组的总元素个数自动计算出数组的第一个维度大小,而1表示将数组重塑为只有一列的矩阵。 最后,将这个重塑后的列矩阵乘以5,得到最终的结果y_data。 总结来说,这段代码的作用是将二维数据的每一行元素求和并乘以5,然后将结果重塑为一个列矩阵。 ### 回答3: 这段代码的含义是将数组 x_data 中的元素按行相加,并乘以 5,最后将结果按列重新排列成一个二维数组 y_data。 首先,np.sum(x_data, axis=-1) 表示对 x_data 这个二维数组的每一行进行求和,axis=-1 表示沿着行的方向进行求和。这样得到的结果是一个一维数组,其中每个元素是对应行的和。 接下来,乘以 5 的操作表示将上一步得到的一维数组中的每个元素都乘以 5,将得到的结果仍然存储在一维数组中。 最后,reshape((-1, 1)) 表示将结果重新排列成一个二维数组,(-1, 1) 表示行数不确定,列数为 1。通过这个操作可以将一维数组转化为二维数组,其中每个元素作为一行的第一个(也是唯一一个)元素。 总的来说,这段代码的目的是将二维数组 x_data 的每一行元素求和后,乘以 5,并按列重新排列为一个二维数组 y_data。

相关推荐

(143,9)的DataFrame与(143.7)的DataFrame在做以下操作时import numpy as np def GM11(x0): # 灰色预测模型 x1 = np.cumsum(x0) z1 = (x1[:len(x1)-1] + x1[1:])/2.0 z1 = z1.reshape((len(z1),1)) B = np.append(-z1, np.ones_like(z1), axis=1) Y = x0[1:].reshape((len(x0)-1, 1)) [[a], [b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) return (a, b) def GM11_predict(x0, a, b): # 预测函数 result = [] for i in range(1, 11): result.append((x0[0]-b/a)*(1-np.exp(a))*np.exp(-a*(i-1))) result.append((x0[0]-b/a)*(1-np.exp(a))*np.exp(-a*10)) return result # 计算灰色关联度 def Grey_Relation(x, y): x = np.array(x) y = np.array(y) x0 = x[0] y0 = y[0] x_model = GM11(x) y_model = GM11(y) x_predict = GM11_predict(x, *x_model) y_predict = GM11_predict(y, *y_model) delta_x = np.abs(x-x_predict)/np.abs(x).max() delta_y = np.abs(y-y_predict)/np.abs(y).max() grey_relation = 0.5*np.exp(-0.5*((delta_x-delta_y)**2).sum()) return grey_relation # 计算灰色关联度矩阵 def Grey_Relation_Matrix(data1, data2): matrix = [] for i in range(data1.shape[1]): row = [] for j in range(data2.shape[1]): x = data1.iloc[:, i].tolist() y = data2.iloc[:, j].tolist() grey_relation = Grey_Relation(x, y) row.append(grey_relation) matrix.append(row) return np.array(matrix) # 计算人口-经济的灰色关联度矩阵 relation_matrix = Grey_Relation_Matrix(pop_data, eco_data),发生了以下错误:operands could not be broadcast together with shapes (143,) (11,) ,请写出问题所在,并给出解决代码

class Client(object): def __init__(self, conf, public_key, weights, data_x, data_y): self.conf = conf self.public_key = public_key self.local_model = models.LR_Model(public_key=self.public_key, w=weights, encrypted=True) #print(type(self.local_model.encrypt_weights)) self.data_x = data_x self.data_y = data_y #print(self.data_x.shape, self.data_y.shape) def local_train(self, weights): original_w = weights self.local_model.set_encrypt_weights(weights) neg_one = self.public_key.encrypt(-1) for e in range(self.conf["local_epochs"]): print("start epoch ", e) #if e > 0 and e%2 == 0: # print("re encrypt") # self.local_model.encrypt_weights = Server.re_encrypt(self.local_model.encrypt_weights) idx = np.arange(self.data_x.shape[0]) batch_idx = np.random.choice(idx, self.conf['batch_size'], replace=False) #print(batch_idx) x = self.data_x[batch_idx] x = np.concatenate((x, np.ones((x.shape[0], 1))), axis=1) y = self.data_y[batch_idx].reshape((-1, 1)) #print((0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one).shape) #print(x.transpose().shape) #assert(False) batch_encrypted_grad = x.transpose() * (0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one) encrypted_grad = batch_encrypted_grad.sum(axis=1) / y.shape[0] for j in range(len(self.local_model.encrypt_weights)): self.local_model.encrypt_weights[j] -= self.conf["lr"] * encrypted_grad[j] weight_accumulators = [] #print(models.decrypt_vector(Server.private_key, weights)) for j in range(len(self.local_model.encrypt_weights)): weight_accumulators.append(self.local_model.encrypt_weights[j] - original_w[j]) return weight_accumulators

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LassoCV from sklearn.model_selection import train_test_split # 加载数据集 abalone = fetch_openml(name='abalone', version=1, as_frame=True) # 获取特征和标签 X = abalone.data y = abalone.target # 对性别特征进行独热编码 gender_encoder = OneHotEncoder(sparse=False) gender_encoded = gender_encoder.fit_transform(X[['Sex']]) # 特征缩放 scaler = StandardScaler() X_scaled = scaler.fit_transform(X.drop('Sex', axis=1)) # 合并编码后的性别特征和其他特征 X_processed = np.hstack((gender_encoded, X_scaled)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_processed, y, test_size=0.2, random_state=42) # 初始化Lasso回归模型 lasso = LassoCV(alphas=[1e-4], random_state=42) # 随机梯度下降算法迭代次数和损失函数值 n_iterations = 200 losses = [] for iteration in range(n_iterations): # 随机选择一个样本 random_index = np.random.randint(len(X_train)) X_sample = X_train[random_index].reshape(1, -1) y_sample = y_train[random_index].reshape(1, -1) # 计算目标函数值与最优函数值之差 lasso.fit(X_sample, y_sample) loss = np.abs(lasso.coef_ - lasso.coef_).sum() losses.append(loss) # 绘制迭代效率图 plt.plot(range(n_iterations), losses) plt.xlabel('Iteration') plt.ylabel('Difference from Optimal Loss') plt.title('Stochastic Gradient Descent Convergence') plt.show()上述代码报错,请修改

x_train, t_train, x_test, t_test = load_data('F:\\2023\\archive\\train') network = DeepConvNet() network.load_params("deep_convnet_params.pkl") print("calculating test accuracy ... ") sampled = 1000 x_test = x_test[:sampled] t_test = t_test[:sampled] prediect_result = [] for i in x_test: i = np.expand_dims(i, 0) y = network.predict(i) _result = network.predict(i) _result = softmax(_result) result = np.argmax(_result) prediect_result.append(int(result)) acc_number = 0 err_number = 0 for i in range(len(prediect_result)): if prediect_result[i] == t_test[i]: acc_number += 1 else: err_number += 1 print("预测正确数:", acc_number) print("预测错误数:", err_number) print("预测总数:", x_test.shape[0]) print("预测正确率:", acc_number / x_test.shape[0]) classified_ids = [] acc = 0.0 batch_size = 100 for i in range(int(x_test.shape[0] / batch_size)): tx = x_test[i * batch_size:(i + 1) * batch_size] tt = t_test[i * batch_size:(i + 1) * batch_size] y = network.predict(tx, train_flg=False) y = np.argmax(y, axis=1) classified_ids.append(y) acc += np.sum(y == tt) acc = acc / x_test.shape[0] classified_ids = np.array(classified_ids) classified_ids = classified_ids.flatten() max_view = 20 current_view = 1 fig = plt.figure() fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.2, wspace=0.2) mis_pairs = {} for i, val in enumerate(classified_ids == t_test): if not val: ax = fig.add_subplot(4, 5, current_view, xticks=[], yticks=[]) ax.imshow(x_test[i].reshape(28, 28), cmap=plt.cm.gray_r, interpolation='nearest') mis_pairs[current_view] = (t_test[i], classified_ids[i]) current_view += 1 if current_view > max_view: break print("======= 错误预测结果展示 =======") print("{view index: (label, inference), ...}") print(mis_pairs) plt.show()

import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()

最新推荐

recommend-type

setuptools-0.6b3-py2.4.egg

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Java项目之jspm充电桩综合管理系统(源码 + 说明文档)

Java项目之jspm充电桩综合管理系统(源码 + 说明文档) 2 系统开发环境 4 2.1 Java技术 4 2.2 JSP技术 4 2.3 B/S模式 4 2.4 MyEclipse环境配置 5 2.5 MySQL环境配置 5 2.6 SSM框架 6 3 系统分析 7 3.1 系统可行性分析 7 3.1.1 经济可行性 7 3.1.2 技术可行性 7 3.1.3 运行可行性 7 3.2 系统现状分析 7 3.3 功能需求分析 8 3.4 系统设计规则与运行环境 9 3.5系统流程分析 9 3.5.1操作流程 9 3.5.2添加信息流程 10 3.5.3删除信息流程 11 4 系统设计 12 4.1 系统设计主要功能 12 4.2 数据库设计 13 4.2.1 数据库设计规范 13 4.2.2 E-R图 13 4.2.3 数据表 14 5 系统实现 24 5.1系统功能模块 24 5.2后台功能模块 26 5.2.1管理员功能 26 5.2.2用户功能 30 6 系统测试 32 6.1 功能测试 32 6.2 可用性测试 32 6.3 维护测试 33 6.4 性能测试 33
recommend-type

基于JSP药品进货销售库存管理系统源码.zip

这个是一个JSP药品进货销售库存管理系统,管理员角色包含以下功能:管理员登录,进货管理,销售管理,库存管理,员工管理,客户管理,供应商管理,修改密码等功能。 本项目实现的最终作用是基于JSP药品进货销售库存管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 供应商管理 - 修改密码 - 员工管理 - 客户管理 - 库存管理 - 管理员登录 - 进货管理 - 销售管理
recommend-type

基于JSP商品销售管理系统源码.zip

这个是一个JSP商品销售管理系统,管理员角色包含以下功能:管理员登录,管理员首页,用户管理,供应商管理,商品管理,入库管理,出库管理,系统公告管理,管理员信息修改等功能。用户角色包含以下功能:用户注册,用户登录,供应商管理,商品管理,入库管理,出库管理,系统公告查看,个人信息修改等功能。 本项目实现的最终作用是基于JSP商品销售管理系统 分为2个角色 第1个角色为管理员角色,实现了如下功能: - 供应商管理 - 入库管理 - 出库管理 - 商品管理 - 用户管理 - 管理员信息修改 - 管理员登录 - 管理员首页 - 系统公告管理 第2个角色为用户角色,实现了如下功能: - 个人信息修改 - 供应商管理 - 入库管理 - 出库管理 - 商品管理 - 用户注册 - 用户登录 - 系统公告查看
recommend-type

什么是mysql以及学习了解mysql的意义是什么

mysql
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。