BertTokenizer.from_pretrained()

时间: 2023-08-27 21:04:22 浏览: 54
`BertTokenizer.from_pretrained()` 是 Hugging Face Transformers 库中的一个方法,用于加载预训练的 BERT 模型的 tokenizer。这个方法可以接受一个预训练模型的名称或者路径作为参数,然后会自动下载相应的 tokenizer 模型,并返回一个 tokenizer 对象。这个 tokenizer 对象可以将文本序列转换为 BERT 模型所需的输入格式(例如 token ids、attention masks 等),以便输入到 BERT 模型中进行推理或训练。
相关问题

BertTokenizer.from_pretrained

BertTokenizer.from_pretrained是用于从预训练模型中加载BertTokenizer的方法。在Python中,可以通过以下方式导入和初始化BertTokenizer: ``` from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path='bert-base-chinese') ``` 其中,pretrained_model_name_or_path参数指定了预训练模型的名称或路径,例如'bert-base-chinese'表示使用中文预训练的BERT模型。这样初始化后,你可以使用tokenizer对文本进行分词和编码处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [BertTokenizer 使用方法](https://blog.csdn.net/Defiler_Lee/article/details/126490287)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* [transformer包中的bert预训练模型的调用详解](https://blog.csdn.net/qq_52785473/article/details/125786295)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

berttokenizer.from_pretrained

bert-tokenizer.from_pretrained() 是用于从预训练的 BERT 模型加载 tokenizer 的函数。使用这个函数可以方便地在自己的项目中使用 BERT 模型预训练得到的 tokenizer。

相关推荐

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words)

from transformers import BertTokenizer, BertModel import torch from sklearn.metrics.pairwise import cosine_similarity # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 种子词列表 seed_words = ['个人信息', '隐私', '泄露', '安全'] # 加载微博用户文本语料(假设存储在weibo1.txt文件中) with open('output/weibo1.txt', 'r', encoding='utf-8') as f: corpus = f.readlines() # 预处理文本语料,获取每个中文词汇的词向量 corpus_vectors = [] for text in corpus: # 使用BERT分词器将文本分成词汇 tokens = tokenizer.tokenize(text) # 将词汇转换为对应的id input_ids = tokenizer.convert_tokens_to_ids(tokens) # 将id序列转换为PyTorch张量 input_ids = torch.tensor(input_ids).unsqueeze(0) # 使用BERT模型计算词向量 with torch.no_grad(): outputs = model(input_ids) last_hidden_state = outputs[0][:, 1:-1, :] avg_pooling = torch.mean(last_hidden_state, dim=1) corpus_vectors.append(avg_pooling.numpy()) # 计算每个中文词汇与种子词的余弦相似度 similarity_threshold = 0.8 privacy_words = set() for seed_word in seed_words: # 将种子词转换为对应的id seed_word_ids = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(seed_word)) # 将id序列转换为PyTorch张量,并增加batch size维度 seed_word_ids = torch.tensor(seed_word_ids).unsqueeze(0) # 使用BERT模型计算种子词的词向量 with torch.no_grad(): outputs = model(seed_word_ids) last_hidden_state = outputs[0][:, 1:-1, :] avg_pooling = torch.mean(last_hidden_state, dim=1) seed_word_vector = avg_pooling.numpy() # 计算每个中文词汇与种子词的余弦相似度 for i, vector in enumerate(corpus_vectors): sim = cosine_similarity([seed_word_vector], [vector])[0][0] if sim >= similarity_threshold: privacy_words.add(corpus[i]) print(privacy_words) 上述代码运行后报错了,报错信息:ValueError: Found array with dim 3. check_pairwise_arrays expected <= 2. 怎么修改?

import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) # 计算当前微博词汇与种子词的相似度 sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max() print(sim, word) if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) 上述代码运行之后有错误,报错信息为:Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/newsim.py", line 397, in <module> seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) IndexError: index 3 is out of bounds for dimension 0 with size 3. 请帮我修改

import torchfrom transformers import BertTokenizer, BertModel# 加载Bert预训练模型和tokenizermodel = BertModel.from_pretrained('bert-base-chinese')tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')# 微博文本和种子词text = '今天天气真好,心情非常愉快!'seeds = ['天气', '心情', '愉快']# 将微博文本和种子词转换为Bert输入格式inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True)# 使用Bert模型获取微博文本和种子词的词向量with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size]# 计算种子词和微博文本中所有词语的余弦相似度text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size]seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, seq_len, hidden_size] -> [batch_size, hidden_size]cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size]# 获取相似度最高的词语similar_words = []for i in range(len(seeds)): seed_similarities = cosine_similarities[i, :].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word)print(similar_words) 上述修改后的代码输出全是['[CLS]', '[CLS]', '[CLS]'],这不是我想要的结果啊,我想要的是微博文本的词语和种子词很相似的所有词语,而不是bert自动添加的特殊标记符,该怎么办

import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel # 加载种子词库 seed_words = [] with open("output/base_words.txt", "r", encoding="utf-8") as f: for line in f: seed_words.append(line.strip()) print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 构建隐私词库 privacy_words = set(seed_words) for text in text_data: # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(encoded_layers[0][1:-1], word_tensor, dense_output=False)[0].max() if sim > 0.5: privacy_words.add(word) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f: for word in privacy_words: f.write(word + "\n") 上述代码中的这两行代码: if sim > 0.5: privacy_words.add(word) 中privacy_words集合写入的词汇不是我想要的,运行之后都是写入privacy_words集合的都是单个字,我需要的是大于等于两个字的中文词汇,并且不包含种子词列表中的词汇,只需要将微博文本数据中与种子词相似度高的词汇写入privacy_words集合中,请帮我正确修改上述代码

import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # with open("output/base_words.txt", "r", encoding="utf-8") as f: # for line in f: # seed_words.append(line.strip()) # print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + words + ["[SEP]"] # print(tokens) # # 对文本进行分词,并且添加特殊标记 # tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] # print(tokens) token_ids = tokenizer.convert_tokens_to_ids(tokens) # print(token_ids) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # print(encoded_layers) # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): # print(tokens[i]) word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(encoded_layers[0][1:-1], word_tensor, dense_output=False)[0].max() if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f: for word in privacy_words: f.write(word + "\n") 上述代码使用bert微调来训练自己的微博数据来获取词向量,然后计算与种子词的相似度,输出结果会不会更准确,修改代码帮我实现一下

import jieba import torch from transformers import BertTokenizer, BertModel, BertConfig # 自定义词汇表路径 vocab_path = "output/user_vocab.txt" count = 0 with open(vocab_path, 'r', encoding='utf-8') as file: for line in file: count += 1 user_vocab = count print(user_vocab) # 种子词 seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo_data.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT分词器,并使用自定义词汇表 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', vocab_file=vocab_path) config = BertConfig.from_pretrained("bert-base-chinese", vocab_size=user_vocab) # 加载BERT模型 model = BertModel.from_pretrained('bert-base-chinese', config=config, ignore_mismatched_sizes=True) seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) model.eval() with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/user_dict.txt') # 构建隐私词库 privacy_words = set() privacy_words_sim = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) model.eval() with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的余弦相似度 for i in range(1, len(tokens) - 1): word = tokens[i] if word in seed_words: continue if len(word) <= 1: continue sim_scores = [] for j in range(len(seed_encoded_layers)): sim_scores.append(torch.cosine_similarity(seed_encoded_layers[j][0], encoded_layers[j][i], dim=0).item()) cos_sim = sum(sim_scores) / len(sim_scores) print(cos_sim, word) if cos_sim >= 0.5: privacy_words.add(word) privacy_words_sim.add((word, cos_sim)) print(privacy_words) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f1: for word in privacy_words: f1.write(word + '\n') with open("output/privacy_words_sim.txt", "w", encoding="utf-8") as f2: for word, cos_sim in privacy_words_sim: f2.write(word + "\t" + str(cos_sim) + "\n") 详细解释上述代码,包括这行代码的作用以及为什么要这样做?

最新推荐

recommend-type

可靠性测试及模型计算模板

可靠性测试及模型计算模板
recommend-type

简述PLC应用及使用中应注意的问题42288.doc

plc
recommend-type

新型智慧城市整体规划建设方案双份文档.pptx

新型智慧城市整体规划建设方案双份文档.pptx
recommend-type

普通机械手PLC与触摸屏的控制系统设计.doc

普通机械手PLC与触摸屏的控制系统设计.doc
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依