pd.read_excel函数的所有参数使用实例

时间: 2024-04-08 12:08:45 浏览: 99
下面是一个使用pd.read_excel函数的例子,其中包含了该函数的所有参数: ```python import pandas as pd # 读取Excel文件中的数据,并将第一张表格转换为DataFrame data = pd.read_excel('example.xlsx', sheet_name=0, header=0, index_col=0, usecols='A:C', nrows=10, skiprows=[2, 3]) # 参数说明: # 'example.xlsx': Excel文件名或路径 # sheet_name=0:读取Excel文件中的第一张表格 # header=0: 使用第一行作为列名 # index_col=0: 将第一列设为索引列 # usecols='A:C': 只读取Excel文件中的A列到C列的数据 # nrows=10: 只读取前10行数据 # skiprows=[2, 3]: 跳过第二行和第三行不读取 # 打印读取的数据 print(data) ``` 在实际使用中,我们可以根据需要选择需要的参数来读取Excel文件中的数据。
相关问题

pd.read_csv 实例

`pd.read_csv`是Pandas库中的一个函数,用于从CSV文件中读取数据并创建一个DataFrame对象。下面是一个`pd.read_csv`的示例: ```python import pandas as pd # 读取CSV文件并创建DataFrame对象 data = pd.read_csv('data.csv') # 打印DataFrame的前几行数据 print(data.head()) ``` 在上面的示例中,我们首先导入了Pandas库,并使用`pd.read_csv`函数读取名为"data.csv"的CSV文件。然后,我们将读取的数据存储在一个名为"data"的DataFrame对象中。最后,我们使用`head()`方法打印出DataFrame的前几行数据。

使用padas的read_Excel和to_Excel函数实现Excel文件的读取

Pandas是一个强大的数据处理库,在Python中常用于数据分析。它的`read_excel`函数用于从Excel文件中读取数据,而`to_excel`函数则用于将DataFrame或Series数据保存到Excel文件中。 1. **读取Excel文件**: ```python import pandas as pd # 加载数据 df = pd.read_excel('your_file.xlsx', sheet_name='Sheet1') # 如果有多个工作表,需要指定sheet_name if 'index_col' in locals(): # 如果设置了索引列,默认会作为行索引 df = df.set_index(index_col) # 打印数据的前几行 print(df.head()) ``` 这里`your_file.xlsx`是你想要读取的Excel文件名,`Sheet1`是你要加载的工作表名称,如果不需要默认的索引列,可以省略`index_col`。 2. **保存数据到Excel文件**: ```python df_to_save = ... # 你已经处理过的DataFrame实例 df_to_save.to_excel('output_file.xlsx', index=False) # 将df保存为新的Excel文件,index=False表示不保留索引 ``` `output_file.xlsx`是你要保存的目标Excel文件名。
阅读全文

相关推荐

import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] X = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(X.head()) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) def relu(X): output=np.maximum(0, X) return output def relu_back_propagation(derror_wrt_output,X): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,X): if activation_choose == 'relu': return relu(X) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b()

import deap import random from deap import base, creator, tools, algorithms import numpy as np import pandas as pd # 参数 stations = 30 start_end_stations = [1, 2, 5, 8, 10, 14, 17, 18, 21, 22, 25, 26, 27, 30] min_interval = 108 min_stopping_time = 20 max_stopping_time = 120 passengers_per_train = 1860 min_small_loop_stations = 3 max_small_loop_stations = 24 average_boarding_time = 0.04 # 使用 ExcelFile ,通过将 xls 或者 xlsx 路径传入,生成一个实例 stations_kilo1 = pd.read_excel(r'D:\桌面\附件2:区间运行时间(1).xlsx', sheet_name="Sheet1") stations_kilo2 = pd.read_excel(r'D:\桌面\附件3:OD客流数据(1).xlsx', sheet_name="Sheet1") stations_kilo3 = pd.read_excel(r'D:\桌面\附件4:断面客流数据.xlsx', sheet_name="Sheet1") print(stations_kilo1) print(stations_kilo2) print(stations_kilo3) # 适应度函数 def fitness_function(individual): big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = individual small_loop_length = small_loop_end - small_loop_start if small_loop_length < min_small_loop_stations or small_loop_length > max_small_loop_stations: return 1e9, cost = (big_loop_trains + small_loop_trains) * (stations - 1) * min_interval + average_boarding_time * passengers_per_train * (big_loop_trains + small_loop_trains) return cost, # 创建适应度和个体类 creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) # 注册初始化函数 toolbox = base.Toolbox() toolbox.register("big_loop_trains", random.randint, 1, 10) toolbox.register("small_loop_trains", random.randint, 1, 10) toolbox.register("small_loop_start", random.choice, start_end_stations) toolbox.register("small_loop_end", random.choice, start_end_stations) toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.big_loop_trains, toolbox.small_loop_trains, toolbox.small_loop_start, toolbox.small_loop_end), n=1) toolbox.register("population", tools.initRepeat, list, toolbox.individual) # 注册遗传算法操作 toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutUniformInt, low=[1, 1, min(start_end_stations), min(start_end_stations)], up=[10, 10, max(start_end_stations), max(start_end_stations)], indpb=0.5) toolbox.register("select", tools.selBest) toolbox.register("evaluate", fitness_function) # 设置遗传算法参数 population_size = 100 crossover_probability = 0.8 mutation_probability = 0.2 num_generations = 100 # 初始化种群 population = toolbox.population(n=population_size) # 进化 for gen in range(num_generations): offspring = algorithms.varAnd(population, toolbox, cxpb=crossover_probability, mutpb=mutation_probability) fits = toolbox.map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = fit population = toolbox.select(offspring, k=len(population)) # 找到最佳个体 best_individual = tools.selBest(population, k=1)[0] # 解码最佳个体 big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = best_individual # 输出结果 print("Big Loop Trains:", big_loop_trains) print("Small Loop Trains:", small_loop_trains) print("Small Loop Start Station:", small_loop_start) print("Small Loop End Station:", small_loop_end)分析代码

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

最新推荐

recommend-type

python基础教程:Python 中pandas.read_excel详细介绍

本篇文章将深入探讨`pandas.read_excel`的使用及其参数。 首先,`pandas.read_excel`的基本用法是导入pandas库,然后调用`read_excel`函数,传入Excel文件的路径作为参数。例如: ```python import pandas as pd ...
recommend-type

python实现word文档批量转成自定义格式的excel文档的思路及实例代码

Python 实现将 Word 文档...总之,这个实例展示了如何使用 Python 通过 `pandas` 和 `os` 库将非结构化的 Word 文档内容转换为结构化的 Excel 表格,适用于需要将大量试题从 Word 转移到数据库或其他结构化存储的场景。
recommend-type

pandas读取csv文件,分隔符参数sep的实例

在`pandas`中,我们可以使用`read_csv()`函数来读取CSV文件,这个函数提供了许多可定制的参数,其中之一便是`sep`。 `sep`参数用于定义CSV文件中的列分隔符,默认值是逗号(','),这意味着`pandas`会将逗号视为列...
recommend-type

Pandas读取并修改excel的示例代码

`read_excel()`函数有许多可选参数,如`io`、`sheet_name`、`header`等。`io`参数是Excel文件的路径,可以是文件名或文件对象。`sheet_name`用于指定读取的工作表,可以是单个工作表名称或列表。`header`参数用来...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依