使用1*N数据集训练gan模型代码
时间: 2023-12-31 15:04:03 浏览: 76
生成对抗网络(GAN)实例 代码+数据集
5星 · 资源好评率100%
这里是一个使用PyTorch实现的针对1*N数据集的GAN模型训练代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import transforms
from torchvision.utils import save_image
# 定义生成器和判别器模型
class Generator(nn.Module):
def __init__(self, input_dim=100, output_dim=784):
super(Generator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(input_dim, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, output_dim),
nn.Tanh()
)
def forward(self, x):
x = self.fc(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim=784, output_dim=1):
super(Discriminator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(input_dim, 1024),
nn.ReLU(inplace=True),
nn.Dropout(p=0.3),
nn.Linear(1024, 512),
nn.ReLU(inplace=True),
nn.Dropout(p=0.3),
nn.Linear(512, 256),
nn.ReLU(inplace=True),
nn.Dropout(p=0.3),
nn.Linear(256, output_dim),
nn.Sigmoid()
)
def forward(self, x):
x = self.fc(x)
return x
# 定义训练函数
def train_GAN(generator, discriminator, train_loader, device, num_epochs=200):
generator.to(device)
discriminator.to(device)
# 定义损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
for epoch in range(num_epochs):
for i, (real_images, _) in enumerate(train_loader):
# 将真实图像和标签移动到GPU
real_images = real_images.to(device)
# 训练判别器
discriminator.zero_grad()
# 计算真实图像的判别结果
real_labels = torch.ones(real_images.size(0), 1).to(device)
real_outputs = discriminator(real_images)
d_loss_real = criterion(real_outputs, real_labels)
# 生成假图像并计算假图像的判别结果
noise = torch.randn(real_images.size(0), 100).to(device)
fake_images = generator(noise)
fake_labels = torch.zeros(real_images.size(0), 1).to(device)
fake_outputs = discriminator(fake_images.detach())
d_loss_fake = criterion(fake_outputs, fake_labels)
# 计算判别器的总损失并进行反向传播优化
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
d_optimizer.step()
# 训练生成器
generator.zero_grad()
# 生成假图像并计算其判别结果
fake_images = generator(noise)
fake_outputs = discriminator(fake_images)
# 计算生成器的损失并进行反向传播优化
g_loss = criterion(fake_outputs, real_labels)
g_loss.backward()
g_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), d_loss.item(), g_loss.item()))
# 保存生成的假图像
if (epoch+1) % 10 == 0:
fake_images = generator(noise).reshape(-1, 1, 28, 28)
save_image(fake_images, 'fake_images-{}.png'.format(epoch+1), normalize=True)
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
train_dataset = MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
# 定义设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 创建生成器和判别器模型
generator = Generator()
discriminator = Discriminator()
# 训练GAN模型
train_GAN(generator, discriminator, train_loader, device, num_epochs=200)
```
这个例子中,我们使用了MNIST数据集作为1*N的数据集,生成器和判别器模型都是基于全连接层的简单网络。在训练GAN模型时,我们需要按照GAN的训练流程,先训练判别器,再训练生成器。在每个epoch结束时,我们将生成器生成的假图像保存下来以供查看。
阅读全文