python中如何实现基于中文语料的word2vec预训练模型中如何保留非中文字符
时间: 2024-03-02 20:53:56 浏览: 133
在Python中实现基于中文语料的word2vec预训练模型中保留非中文字符,可以采用以下两种方式:
1. 使用jieba分词工具,将文本中的中英文混合的词语分开,并将非中文字符作为一个独立的词汇来处理。示例代码如下:
```python
import jieba
# 加载停用词表
stopwords = []
with open('stopwords.txt') as f:
for line in f:
stopwords.append(line.strip())
# 分词,并过滤停用词和非中文字符
def tokenize(text):
words = jieba.cut(text)
words = [word for word in words if word not in stopwords and '\u4e00' <= word <= '\u9fa5']
return words
# 读入文本并进行分词
sentences = []
with open('corpus.txt') as f:
for line in f:
line = line.strip()
words = tokenize(line)
sentences.append(words)
# 训练模型
from gensim.models import Word2Vec
model = Word2Vec(sentences, size=100, window=5, min_count=5, workers=4)
```
2. 使用正则表达式,将非中文字符作为一个独立的词汇来处理。示例代码如下:
```python
import re
import jieba
# 加载停用词表
stopwords = []
with open('stopwords.txt') as f:
for line in f:
stopwords.append(line.strip())
# 分词,并过滤停用词和非中文字符
def tokenize(text):
text = re.sub(r'[^\u4e00-\u9fa5]+', ' ', text)
words = jieba.cut(text)
words = [word for word in words if word not in stopwords]
return words
# 读入文本并进行分词
sentences = []
with open('corpus.txt') as f:
for line in f:
line = line.strip()
words = tokenize(line)
sentences.append(words)
# 训练模型
from gensim.models import Word2Vec
model = Word2Vec(sentences, size=100, window=5, min_count=5, workers=4)
```
其中,`corpus.txt`是待训练的中文语料文件,`stopwords.txt`是停用词表文件,可以自行准备或从网络上下载。在训练过程中,可以根据需要调整`size`、`window`、`min_count`等参数,以便得到更好的词向量表示。
阅读全文