def resn_unit(incoming, nb, growth, weight_init='variance_scaling', weight_decay=0.0001, name='dens_unit'):

时间: 2023-04-01 16:03:20 浏览: 99
这是一个关于深度学习中的残差单元的定义,属于技术问题,我可以回答。残差单元是一种用于深度神经网络的模块,可以帮助网络更好地学习复杂的特征。它通过将输入和输出相加来实现跨层连接,从而避免了梯度消失和梯度爆炸等问题。其中,incoming表示输入,nb表示输出通道数,growth表示每个残差单元内部的通道数增长率,weight_init表示权重初始化方法,weight_decay表示权重衰减系数,name表示模块的名称。
相关问题

resn_ud = resn_unit(incoming, nb, growth, name='resn_ud')

这是一个代码问题,我可以回答。这段代码是使用了一个名为resn_unit的函数,传入了incoming、nb、growth等参数,并将返回值赋值给了resn_ud变量。具体实现需要查看resn_unit函数的定义。

def resn_ups_concat(incoming, coct, nb, growth, ih, iw, name='resn_ups_concat'):

这个问题是关于代码的,我可以回答。这是一个函数定义,用于实现残差网络的上采样和特征拼接操作。其中incoming是输入张量,coct是通道数,nb是块数,growth是增长率,ih和iw是输入张量的高度和宽度,name是函数的名称。
阅读全文

相关推荐

class MainWindow(QMainWindow): def init(self, user_id): super().init() self.user_id = user_id self.initUI() # 打开串口 self.ser = serial.Serial('COM7', 9600, timeout=1) def initUI(self): # 创建用于显示员工信息的控件 self.info_label = QLabel("员工信息", self) self.info_label.move(100, 50) self.info_label.setStyleSheet("font-size: 24px; color: black; background-color: #eee; border-radius: 10px;") self.id_label = QLabel("员工ID:", self) self.id_label.move(70, 100) self.id_label.setStyleSheet("font-size: 18px; color: black;") self.name_label = QLabel("姓名:", self) self.name_label.move(70, 150) self.name_label.setStyleSheet("font-size: 18px; color: black;") self.six_label = QLabel("性别:", self) self.six_label.move(70, 200) self.six_label.setStyleSheet("font-size: 18px; color: black;") self.sfz_label = QLabel("身份证:", self) self.sfz_label.move(70, 250) self.sfz_label.setStyleSheet("font-size: 18px; color: black;") self.tel_label = QLabel("电话:", self) self.tel_label.move(70, 300) self.tel_label.setStyleSheet("font-size: 18px; color: black;") self.setFixedSize(800, 500) self.setWindowTitle('员工信息') # 查询员工信息 def query_employee(self, id): conn = pymysql.connect(host='39.99.214.172', user='root', password='Solotion.123', database='jj_tset') cursor = conn.cursor() cursor.execute("SELECT * FROM employee_table WHERE user_id='%s'" % id) result = cursor.fetchone() conn.close() return result # 读取数据 def read_data(self): data = self.ser.readline() if data: # 解析数据 id = data.decode().strip() # 查询员工信息 result = self.query_employee(id) if result: # 更新UI界面 self.id_label.setText("员工ID:" + result[0]) self.name_label.setText("姓名:" + str(result[1])) self.six_label.setText("性别:" + result[2]) self.sfz_label.setText("身份证:" + str(result[3])) self.tel_label.setText("电话:" + result[4]) print(result[0],result[1],result[2],result[3],result[4]) else: # 显示空白信息 self.id_label.setText("员工ID:") self.name_label.setText("姓名:") self.six_label.setText("性别:") self.sfz_label.setText("身份证:") self.tel_label.setText("电话:") # 定时读取数据 QTimer.singleShot(100, self.read_data) def closeEvent(self, event): # 关闭串口 self.ser.close()用多线程改写代码,防止主线程阻塞

能给我讲讲这段代码吗def tcnBlock(incoming, filters, kernel_size, dilation_rate): net = incoming identity = incoming # net = BatchNormalization()(net) # net = Activation('relu')(net) net = keras.layers.LeakyReLU(alpha=0.2)(net) net = keras.layers.Dropout(0.3)(net) net = Conv1D(filters, kernel_size, padding='causal', dilation_rate=dilation_rate, kernel_regularizer=regularizers.l2(1e-3))(net) # net = BatchNormalization()(net) net = Activation('relu')(net) # net = keras.layers.LeakyReLU(alpha=0.2)(net) net = keras.layers.Dropout(0.3)(net) net = Conv1D(filters, kernel_size, padding='causal', dilation_rate=dilation_rate, kernel_regularizer=regularizers.l2(1e-3))(net) # 计算全局均值 net_abs = Lambda(abs_backend)(net) abs_mean = GlobalAveragePooling1D()(net_abs) # 计算系数 # 输出通道数 scales = Dense(filters, activation=None, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(1e-4))(abs_mean) # scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(filters, activation='sigmoid', kernel_regularizer=regularizers.l2(1e-4))(scales) scales = Lambda(expand_dim_backend)(scales) # 计算阈值 thres = keras.layers.multiply([abs_mean, scales]) # 软阈值函数 sub = keras.layers.subtract([net_abs, thres]) zeros = keras.layers.subtract([sub, sub]) n_sub = keras.layers.maximum([sub, zeros]) net = keras.layers.multiply([Lambda(sign_backend)(net), n_sub]) if identity.shape[-1] == filters: shortcut = identity else: shortcut = Conv1D(filters, kernel_size, padding='same')(identity) # shortcut(捷径) net = keras.layers.add([net, shortcut]) return net

void SerialApp_ProcessMSGCmd( afIncomingMSGPacket_t *pkt ){ uint8 stat; uint8 seqnb; uint8 delay; switch ( pkt->clusterId ) { // A message with a serial data block to be transmitted on the serial port. case SERIALAPP_CLUSTERID1: // Store the address for sending and retrying. osal_memcpy(&SerialApp_RxAddr, &(pkt->srcAddr), sizeof( afAddrType_t )); seqnb = pkt->cmd.Data[0]; // Keep message if not a repeat packet if ( (seqnb > SerialApp_RxSeq) || // Normal ((seqnb < 0x80 ) && ( SerialApp_RxSeq > 0x80)) ) // Wrap-around { // Transmit the data on the serial port. if ( HalUARTWrite( SERIAL_APP_PORT, pkt->cmd.Data+1, (pkt->cmd.DataLength-1) ) ) { // Save for next incoming message SerialApp_RxSeq = seqnb; stat = OTA_SUCCESS; } else { stat = OTA_SER_BUSY; } } else { stat = OTA_DUP_MSG; } // Select approproiate OTA flow-control delay. delay = (stat == OTA_SER_BUSY) ? SERIALAPP_NAK_DELAY : SERIALAPP_ACK_DELAY; // Build & send OTA response message. SerialApp_RspBuf[0] = stat; SerialApp_RspBuf[1] = seqnb; SerialApp_RspBuf[2] = LO_UINT16( delay ); SerialApp_RspBuf[3] = HI_UINT16( delay ); osal_set_event( SerialApp_TaskID, SERIALAPP_RESP_EVT ); osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_RESP_EVT); break; // A response to a received serial data block. case SERIALAPP_CLUSTERID2: if ((pkt->cmd.Data[1] == SerialApp_TxSeq) && ((pkt->cmd.Data[0] == OTA_SUCCESS) || (pkt->cmd.Data[0] == OTA_DUP_MSG))) { SerialApp_TxLen = 0; osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_SEND_EVT); } else { // Re-start timeout according to delay sent from other device. delay = BUILD_UINT16( pkt->cmd.Data[2], pkt->cmd.Data[3] ); osal_start_timerEx( SerialApp_TaskID, SERIALAPP_SEND_EVT, delay ); } break; case SERIALAPP_CONNECTREQ_CLUSTER: SerialApp_ConnectReqProcess((uint8*)pkt->cmd.Data); case SERIALAPP_CONNECTRSP_CLUSTER: SerialApp_DeviceConnectRsp((uint8*)pkt->cmd.Data); default: break; }}每行代码注释

最新推荐

recommend-type

NR5G网络拒绝码-5gsm_cause = 10 (0xa) (Implicitly de-registered).docx

在5G NR网络中,"NR5G网络拒绝码-5gsm_cause = 10 (0xa) (Implicitly de-registered)"是一个特定的网络拒绝状态,它表示UE(用户设备)已经被网络隐式去注册。这个问题涉及到UE与网络的注册流程,特别是当UE在一段...
recommend-type

android P_MTK RILD.docx

每个状态对应不同的电话阶段,如DIALING、ALERING、ACTIVE、HOLDING、INCOMING和WAITING。 2. GsmCdmaPhone:根据网络模式创建单例,GsmCdmaPhone实例与GsmCdmaCallTracker协同工作,处理电话的建立、切换和挂断等...
recommend-type

vb定时显示报警系统设计(论文+源代码)(2024a7).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决