用python代码分别实现Lasso回归问题的坐标下降算法和弹性网回归算法,并做测试
时间: 2023-06-16 09:06:19 浏览: 108
Lasso回归问题的坐标下降算法:
```python
import numpy as np
def coordinate_descent_lasso(X, y, alpha, max_iter=1000, tol=1e-4):
n, p = X.shape
w = np.zeros(p)
XTX = np.dot(X.T, X)
XTy = np.dot(X.T, y)
for it in range(max_iter):
for j in range(p):
old_wj = w[j]
Xj = X[:, j]
Xw = np.dot(X, w)
w[j] = soft_threshold(Xj, XTy - Xj * old_wj, alpha) / XTX[j, j]
if abs(w[j] - old_wj) > tol:
converged = False
if converged:
break
return w
def soft_threshold(z, gamma):
if z > 0 and gamma < abs(z):
return z - gamma
elif z < 0 and gamma < abs(z):
return z + gamma
else:
return 0
```
弹性网回归算法:
```python
from sklearn.linear_model import ElasticNet
def elastic_net(X, y, alpha=1, l1_ratio=0.5):
model = ElasticNet(alpha=alpha, l1_ratio=l1_ratio)
model.fit(X, y)
return model.coef_
```
测试:
```python
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
boston = load_boston()
X = boston.data
y = boston.target
scaler = StandardScaler()
X = scaler.fit_transform(X)
alpha = 0.1
l1_ratio = 0.5
w1 = coordinate_descent_lasso(X, y, alpha)
w2 = elastic_net(X, y, alpha, l1_ratio)
print("Lasso回归问题的坐标下降算法结果:")
print(w1)
print("弹性网回归算法结果:")
print(w2)
```
阅读全文