for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN, #channel_out=channel_out ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out这是我SA_modules的定义语句,你可以告诉我如果要使用SA_modules的话需要传入几个参数吗?
时间: 2023-06-27 15:08:29 浏览: 88
根据代码,使用 `SA_modules` 需要传入以下参数:
1. `xyz`: 输入的点云坐标,大小为 (batch_size, num_points, 3)
2. `features`: 输入的点云特征,大小为 (batch_size, num_points, in_channels)
3. `skip_features`: 辅助特征,大小为 (batch_size, num_points, skip_channels),默认为空
4. `batch_idx`: batch 的索引,大小为 (batch_size, num_points),默认为 None
示例代码:
```python
import torch
# 假设输入的点云坐标和特征都为 16,skip_channels 为 64
xyz = torch.randn(16, 1024, 3)
features = torch.randn(16, 1024, 128)
skip_features = torch.randn(16, 1024, 64)
# 初始化 SA_modules
sa_modules = SA_modules()
# 使用 SA_modules 处理输入的点云数据
out_xyz, out_features, out_skip_features = sa_modules(xyz, features, skip_features=skip_features)
```
其中,`out_xyz` 和 `out_features` 分别为处理后的点云坐标和特征,大小为 (batch_size, num_points, out_channels),`out_skip_features` 为处理后的辅助特征,大小为 (batch_size, num_points, skip_channels)。
阅读全文