对鸢尾花数据集使用K均值聚类算法,1)观察实验结果是否符合预期;2)利用SSE标准确定K值;3)自行调参并观察对聚类结果的影响。注意:需要把类别信息去掉。
时间: 2024-04-06 20:34:45 浏览: 79
好的,我会尽力回答你的问题。
1)对鸢尾花数据集使用K均值聚类算法的结果应该是将数据集分成K个簇,并且每个簇内部的样本相似度较高,而不同簇之间的样本相似度较低。可以通过观察聚类结果的簇间距离和簇内距离来判断聚类的效果是否符合预期。
2)利用SSE标准可以确定K值。SSE(Sum of Squared Errors)是指所有数据点到其所属簇中心点的距离平方和。当K值增加时,SSE一般会逐渐减小,但是如果K值过大,聚类效果会变得不明显,SSE的下降幅度也会减小。因此,可以通过绘制不同K值下的SSE曲线,选择SSE急剧下降的K值作为最终聚类的K值。
3)自行调参可以通过调整K值、距离度量方式、初始化方式等来观察对聚类结果的影响。例如,可以尝试使用不同的距离度量方式(如欧氏距离、曼哈顿距离等)来计算数据点之间的距离,或者尝试使用不同的初始化方式(如随机初始化、K-Means++等)来初始化聚类中心。
相关问题
用python完成机器学习实验鸢尾花数据集的 k 均值聚类实验步骤
好的,以下是用Python完成机器学习实验鸢尾花数据集的k均值聚类实验步骤:
1. 导入必要的库和数据集
```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
```
2. 确定K值
我们需要选择一个合适的K值来进行聚类,这里我们可以使用肘部法则来确定K值。肘部法则是通过绘制不同K值下的SSE(误差平方和)曲线来确定K值。
```python
sse = []
for k in range(1, 11):
kmeans = KMeans(n_clusters=k, random_state=2021)
kmeans.fit(X)
sse.append(kmeans.inertia_)
plt.figure(figsize=(8, 6))
plt.plot(range(1, 11), sse, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()
```
3. 进行聚类
确定了K值后,我们可以使用KMeans算法进行聚类。
```python
kmeans = KMeans(n_clusters=3, random_state=2021)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
```
4. 可视化结果
最后,我们可以可视化聚类结果。
```python
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
```
完整代码如下:
```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
sse = []
for k in range(1, 11):
kmeans = KMeans(n_clusters=k, random_state=2021)
kmeans.fit(X)
sse.append(kmeans.inertia_)
plt.figure(figsize=(8, 6))
plt.plot(range(1, 11), sse, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()
kmeans = KMeans(n_clusters=3, random_state=2021)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
```
1. 编程实现K-means聚类算法对iris鸢尾花数据集的聚类工作;分析聚类划分k值的选取,以及目标函数的评价准则;
好的,我来为您解答。
K-means聚类算法是一种比较常用的聚类算法,可以将数据分成K个簇。下面是实现K-means聚类算法对iris鸢尾花数据集的聚类的步骤:
1. 读入数据集:使用python中的pandas库,可以方便地读入iris鸢尾花数据集。
2. 随机初始化聚类中心:从数据集中随机选取K个样本作为聚类中心。
3. 计算每个样本到聚类中心的距离,并将样本划分到距离最近的簇中。
4. 更新聚类中心:对于每个簇,重新计算其平均值,并将其作为新的聚类中心。
5. 重复步骤3和4,直到聚类中心不再发生改变或达到最大迭代次数。
在K-means算法中,k值是需要手动指定的。通常采用肘部法则来确定合适的k值。
肘部法则是通过绘制k值与目标函数(SSE)之间的关系图,找到图像出现拐点的位置,该位置对应的k值即为最佳的聚类数。
目标函数SSE(Sum of Squared Errors)是指每个数据点到其对应聚类中心的距离平方和。SSE越小,说明聚类效果越好。
在实际应用中,也可以采用其他评价准则,如轮廓系数、DB指数等来确定聚类数k的值。
阅读全文
相关推荐














