matlab求多元线性回归方程F检验值

时间: 2023-07-13 22:12:09 浏览: 262
在MATLAB中求多元线性回归方程的F检验值可以使用`anova`函数,具体使用方法如下: 1. 假设有`n`个自变量和一个因变量,数据存储在一个`n+1`列的矩阵`data`中,其中第1列为因变量,第2至n+1列为自变量。 2. 使用`fitlm`函数拟合线性回归模型,语法为: ``` mdl = fitlm(data) ``` 函数返回值`mdl`是一个线性回归模型对象,包含拟合的系数、残差等信息。 3. 使用`anova`函数进行方差分析,语法为: ``` [p,F] = anova(mdl) ``` 函数返回值`p`是F检验值对应的P值,`F`是F检验值。 注意:在使用`anova`函数之前,需要保证输入的数据符合多元线性回归模型的假设条件,即自变量之间线性无关、误差服从正态分布、误差方差相等。可以使用多元正态性检验、方差齐性检验等方法进行检验。
相关问题

多元线性回归方程求解matlab

多元线性回归方程的求解可以使用MATLAB中的regress函数。该函数可以根据给定的自变量和因变量数据,计算出回归系数的点估计和区间估计,并进行回归模型的检验。具体步骤如下: 1. 首先,需要准备好自变量和因变量的数据。自变量可以是多个,以矩阵的形式表示,而因变量则是一个向量。 2. 使用regress函数进行回归分析。函数的输入参数包括因变量和自变量的数据,以及一个常数项的列向量(全为1)作为自变量矩阵的第一列。例如,可以使用以下代码进行回归分析: \[b, bint, r, rint, stats\] = regress(TotalEnergy, IndeVariable); 其中,TotalEnergy是因变量的数据,IndeVariable是自变量矩阵。 3. 函数的输出结果包括回归系数的点估计b,回归系数的区间估计bint,残差r,残差的区间估计rint,以及回归模型的统计信息stats。 回归系数的点估计b表示自变量对因变量的影响程度,回归系数的区间估计bint表示对回归系数的置信区间估计。 残差r表示实际观测值与回归模型预测值之间的差异,残差的区间估计rint表示对残差的置信区间估计。 回归模型的统计信息stats包括回归模型的R方值、调整R方值、F统计量和p值等。 通过以上步骤,可以使用MATLAB求解多元线性回归方程并得到相关的统计结果。 #### 引用[.reference_title] - *1* *2* *3* [基于matlab的多元线性回归分析](https://blog.csdn.net/xiaoxiaodawei/article/details/105707346)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

matlab多元线性回归检验

多元线性回归能够分析多个自变量对因变量的影响,并建立其之间的关系模型。在MATLAB中,可以利用“fitlm”函数进行多元线性回归建模,并得到回归系数、截距、回归方程等信息。 但是仅凭模型建立并不能确定其是否可靠和有效,因此需要进行模型检验。多元线性回归模型检验主要包括以下内容: (1)系数显著性检验:利用“table”函数输出回归系数的t值和p值,若p值小于0.05,则说明该系数显著。 (2)模型整体显著性检验:利用“anova”函数输出模型的F值和p值,若p值小于0.05,则说明模型整体显著。 (3)模型拟合优度检验:可利用“rsquare”函数得到模型的拟合优度R²值,其范围为0~1,值越大说明模型拟合越好。 (4)残差分析:检验模型假设前提是否成立,可利用“plotResiduals”函数绘制残差图,观察残差是否呈随机分布、服从正态分布。 以上是MATLAB多元线性回归模型检验的主要内容。在实际使用中,还需要结合具体问题进行判断并进行单独的分析处理。

相关推荐

具体分析以下MATLAB代码,对回归方程作检验,对方差进行分析,x=[15037 18.8 1366 17001 18 1519 18718 3.1 1644 21826 3.4 1893 26937 6.4 2311 35260 14.7 2998 48108 24.1 4044 59811 17.1 5046 70142 8.3 5846 78061 2.8 6420 83024 -0.8 6796 88479 -1.4 7159 98000 0.4 7858 108068 0.7 8622 119096 -0.8 9398 135174 1.2 10542 159587 3.9 12336 184089 1.8 14040 213132 1.5 16024 235367 1.7 17535 277654 1.9 19264]; y=[15.73 15.04 14.39 12.98 11.6 11.45 11.21 10.55 10.42 10.06 9.14 8.18 7.58 6.95 6.45 6.01 5.87 5.89 5.38 5.24 5.45]; [m,n]=size(x); X=[ones(m,1) x]; [m1,n1]=size(X); [m2,n2]=size(y); for i=1:n2 %b 为参数,bint 回归系数的区间估计,r 为残差, %rint 为置信区间,stats 用于回归模型检验 [b(:,i),bint,r,rint,stats(i,:)]=regress(y(:,i),X); [mm,nn]=size(b); for jj=1:m1 temp=0; for ii=1:mm yy(jj,i)=temp+b(ii,i)*X(jj,ii); temp=yy(jj,i); end end xiangdui_wucha(1,i)=abs(abs(y(1,i))-abs(yy(1,i)))/abs(y(1,i)); if n2~=1 subplot(2,n2/2,i); rcoplot(r,rint)%残差分析,作出残差及其置信区间 else rcoplot(r,rint)%残差分析,作出残差及其置信区间 end end disp('参数'); b %参数计算 disp('预测结果'); yy %检验回归模型:相关系数 r^2=stats(1,:)越接近 1 回归方程越显著 %F=stats(2,:)值越大回归方程越显著、p=stats(3,:)<0.01 时回归模型成立 disp('回归模型检验:'); format long stats for i=1:n2 if (stats(i,4)<0.01)&(stats(i,1)>0.6) disp('回归方程显著-------模型成立'); end end format short disp('相对误差'); xiangdui_wucha%第一行原始值与预测值的相对误差

最新推荐

recommend-type

Python_从合成数据代码和模型中学习.zip

Python_从合成数据代码和模型中学习
recommend-type

基于Javascript的enroll微信小程序报名设计源码

本项目是基于Javascript的enroll微信小程序报名设计源码,包含35个文件,其中包括8个JSON文件、7个JavaScript文件、6个WXSS文件、5个WXML文件、3个JPG图片文件、3个PNG图片文件、1个Gitignore文件、1个Markdown文件和1个ICO文件。这个项目是一个微信小程序报名设计,旨在通过Javascript和微信小程序技术栈实现,为用户提供便捷的报名服务。
recommend-type

ALINX黑金AX7020 PYNQ3.0.1镜像

编译好的黑金AX7020 PYNQ3.0.1镜像,功能已验证。 芯片ZYNQ7020,具体型号xc7z070clg400-2 受网盘单文件大小限制,使用分卷压缩的方式上传 注意!请自行下载所有的分卷后再解压
recommend-type

lol r3nzskin

lol skin move it to lol gamed dir
recommend-type

Python处理Excel数据原表保存.rar

Python处理Excel数据原表保存Python处理Excel数据原表保存
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略

![MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略](http://xiaoyuge.work/explain-sql/index/2.png) # 1. MySQL数据库性能优化概述** MySQL数据库性能优化是一项至关重要的任务,可以显著提高应用程序的响应时间和整体用户体验。优化涉及识别和解决影响数据库性能的因素,包括硬件资源瓶颈、软件配置不当和数据库设计缺陷。通过采取适当的优化策略,可以显著提升数据库性能,满足业务需求并提高用户满意度。 # 2. MySQL数据库性能下降的幕后真凶 ### 2.1 硬件资源瓶颈 #### 2.1.1 CPU利用率过高 **症状:
recommend-type

如何在unity创建按钮

在 Unity 中创建按钮的步骤如下: 1. 在 Unity 中创建一个 UI Canvas,选择 GameObject -> UI -> Canvas。 2. 在 Canvas 中创建一个按钮,选择 GameObject -> UI -> Button。 3. 在场景视图中调整按钮的位置和大小。 4. 在 Inspector 中设置按钮的文本、颜色、字体等属性。 5. 添加按钮的响应事件,选择按钮,在 Inspector 的 On Click () 中添加相应的方法。 这样就可以创建一个按钮了,你可以在游戏中使用它来触发相应的操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。