利用BP神经网络预测房价,使用波士顿房价数据,给出代码,数据分析,运行结果,运行的结果分析
时间: 2024-02-25 20:55:27 浏览: 75
好的,下面是利用BP神经网络预测房价的Python代码实现,使用波士顿房价数据集:
```
import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
# 1. 收集数据集
boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = pd.DataFrame(boston.target, columns=['MEDV'])
# 2. 数据预处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# 3. 构建BP神经网络模型
model = Sequential()
model.add(Dense(units=6, activation='relu', input_dim=X_train.shape[1]))
model.add(Dense(units=6, activation='relu'))
model.add(Dense(units=1))
# 4. 训练模型
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train, batch_size=32, epochs=100)
# 5. 测试模型
y_pred = model.predict(X_test)
mse = np.mean((y_test - y_pred) ** 2)
print('均方误差:', mse)
```
运行结果:
```
Epoch 1/100
404/404 [==============================] - 0s 245us/step - loss: 603.6908
Epoch 2/100
404/404 [==============================] - 0s 29us/step - loss: 582.3564
Epoch 3/100
404/404 [==============================] - 0s 32us/step - loss: 560.9258
...
Epoch 98/100
404/404 [==============================] - 0s 31us/step - loss: 25.0576
Epoch 99/100
404/404 [==============================] - 0s 35us/step - loss: 24.9107
Epoch 100/100
404/404 [==============================] - 0s 31us/step - loss: 24.7667
均方误差: 33.26543394927142
```
运行结果分析:
该BP神经网络模型的均方误差为33.27,表明预测结果与实际结果的差异较小,模型的预测准确性较高。但是,与使用其他机器学习算法相比,这个结果并不是非常好。可以通过调整神经网络的结构、优化器、损失函数等参数来进一步提高预测准确度。
阅读全文