torch.nn.utils.clip_grad_norm_( model.parameters(), CFG.max_grad_norm)
时间: 2023-10-30 14:28:45 浏览: 199
这是一个使用 PyTorch 框架的函数,用于对模型的梯度进行裁剪,以避免梯度爆炸的问题。具体来说,它会计算所有参数梯度的范数,并将其裁剪到一个最大值,如果梯度的范数超过了这个最大值,就按比例缩放梯度,使得它们的范数不超过这个最大值。这个函数的第一个参数是模型的参数,第二个参数是最大的梯度范数。这个函数在训练深度神经网络时非常有用,因为在反向传播过程中,梯度可能会变得非常大,导致模型无法收敛。通过裁剪梯度,可以使得模型的训练更加稳定和可靠。
相关问题
torch.nn.utils.clip_grad_norm_
`torch.nn.utils.clip_grad_norm_` 是一个用于梯度裁剪的函数,它可以限制神经网络的梯度在一个合理的范围内,避免梯度爆炸(gradient explosion)或梯度消失(gradient vanishing)的情况发生,从而提高训练的稳定性和效果。
具体来说,`torch.nn.utils.clip_grad_norm_` 函数会计算神经网络所有参数的梯度的范数(norm),并将其限制在一个指定的最大值范围内。如果梯度范数大于该最大值,则会对所有的梯度进行缩放,使其范数等于最大值。
这个函数的使用方法是:先通过 `torch.autograd.backward()` 计算出神经网络的梯度,然后再调用 `torch.nn.utils.clip_grad_norm_` 函数进行梯度裁剪。函数的输入参数包括:神经网络的参数列表、最大梯度范数、指定的范数类型等。函数会返回裁剪后的梯度范数值。
torch.nn.utils.clip_grad_norm_详解
`torch.nn.utils.clip_grad_norm_` 是一个用于梯度裁剪的函数。在训练神经网络时,由于梯度更新时可能存在梯度爆炸或梯度消失的情况,梯度裁剪可以避免这些问题的发生,从而提高模型的训练效果。
该函数的作用是将模型中的梯度张量的范数裁剪到指定的最大值。具体来说,它首先计算所有梯度张量的范数,然后将它们缩放到指定的最大值以下,最后返回缩放因子。可以将返回的缩放因子用于进一步的裁剪操作,以确保梯度张量的范数不会超过指定的最大值。
函数的定义如下:
```python
torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2.0)
```
其中,参数 `parameters` 是一个包含模型中所有参数的迭代器或列表,`max_norm` 是指定的最大范数值,`norm_type` 是范数的类型,取值为 1、2 或无穷大。
如果 `norm_type=2.0`,则计算的是梯度张量的 2-范数,即所有元素的平方和的开方;如果 `norm_type=1.0`,则计算的是梯度张量的 1-范数,即所有元素的绝对值之和;如果 `norm_type=inf`,则计算的是梯度张量的无穷范数,即所有元素的最大绝对值。
该函数会直接修改参数中的梯度张量,不会返回新的张量。
阅读全文