如何使用python绘制relu和grelu函数的图像,并显示x,y坐标轴

时间: 2024-04-30 08:20:31 浏览: 13
您好!感谢您的提问。以下是使用Python绘制ReLU和GReLU函数图像的代码: ```python import matplotlib.pyplot as plt import numpy as np # 绘制ReLU函数 def relu(x): return np.maximum(0, x) x = np.arange(-5, 5, 0.1) y_relu = relu(x) plt.plot(x, y_relu) plt.xlabel('x') plt.ylabel('y') plt.title('ReLU Function') plt.show() # 绘制GReLU函数 def grelu(x, a): return np.maximum(0, x) + a * np.minimum(0, x) * np.exp(x / a) a = 0.5 y_grelu = grelu(x, a) plt.plot(x, y_grelu) plt.xlabel('x') plt.ylabel('y') plt.title('GReLU Function') plt.show() ``` 这段代码会先绘制ReLU函数的图像,再绘制GReLU函数的图像。其中relu函数表示ReLU函数,grelu函数表示带参数a的GReLU函数。参数a的值越大,GReLU函数的中间部分就越光滑。图像右下角的标题标明了绘制的是哪个函数。x轴和y轴坐标会自动显示,并且可以缩放、拖动。 希望这个回答对您有帮助!
相关问题

绘制relu激活函数python代码

下面是Python中绘制ReLU激活函数的代码: ```python import matplotlib.pyplot as plt import numpy as np def relu(x): """ ReLU激活函数 """ return np.maximum(0, x) x = np.arange(-5, 5, 0.1) y = relu(x) plt.plot(x, y) plt.title('ReLU Activation Function') plt.xlabel('Input') plt.ylabel('Output') plt.grid(True) plt.show() ``` 该代码使用matplotlib库绘制了ReLU激活函数的图像。首先使用np.arange函数生成数组x,用于表示输入的取值范围。然后使用relu函数计算每个输入值的输出值,并将结果保存在数组y中。最后使用plt.plot函数绘制x和y的图像,并添加标题、坐标轴标签以及网格线。运行该代码,将会得到一个ReLU激活函数的图像。

python绘制两函数曲线图

要绘制两个函数的曲线图,你可以使用Python中的matplotlib库。首先,你需要导入numpy库和matplotlib.pyplot库。然后,你可以使用numpy的arange函数创建一个x轴的数组,指定x轴的范围和步长。接下来,你可以使用for循环计算每个x值对应的函数值,并将这些值存储在相应的列表中。最后,使用plt.plot函数绘制曲线图,并可以使用plt.ylim函数指定y轴的范围。下面是一个示例代码: ```python import numpy as np import matplotlib.pyplot as plt x = np.arange(-5, 5, 0.1) sigmoid, tanh = \[\], \[\] for t in x: y_sigmoid = 1 / (1 + np.exp(-t)) sigmoid.append(y_sigmoid) y_tanh = np.tanh(t) tanh.append(y_tanh) plt.plot(x, sigmoid, label='Sigmoid') plt.plot(x, tanh, label='Tanh') plt.legend() plt.show() ``` 这段代码将绘制Sigmoid函数和Tanh函数的曲线图。你可以根据需要修改x轴的范围、步长和函数的计算方式。同时,你还可以使用plt.ylim函数来限制y轴的范围。如果你想绘制其他函数的曲线图,只需在循环中计算相应的函数值,并使用plt.plot函数绘制即可。 #### 引用[.reference_title] - *1* [Python绘制简单函数曲线(包括坐标范围限制、刻度指定)](https://blog.csdn.net/yldmkx/article/details/123674659)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python绘制激活函数曲线图及其导数曲线图,激活函数包括sigmoid、relu、tanh](https://blog.csdn.net/qq_33538651/article/details/114413440)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [python 绘制函数曲线图](https://blog.csdn.net/David_jiahuan/article/details/104260168)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

# 拆分数据集 X_train, X_test, y_train, y_test = train_test_split(heartbeats_image, labels, test_size=0.2, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) # 保存数据集 np.save('X_train.npy', X_train) np.save('X_val.npy', X_val) np.save('X_test.npy', X_test) np.save('y_train.npy', y_train) np.save('y_val.npy', y_val) np.save('y_test.npy', y_test) from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout # 定义卷积神经网络 model = Sequential([ Conv2D(filters=32, kernel_size=(3,3), activation='relu', input_shape=(255,255,1)), MaxPooling2D(pool_size=(2,2)), Conv2D(filters=64, kernel_size=(3,3), activation='relu'), MaxPooling2D(pool_size=(2,2)), Conv2D(filters=128, kernel_size=(3,3), activation='relu'), MaxPooling2D(pool_size=(2,2)), Flatten(), Dense(units=128, activation='relu'), Dropout(0.5), Dense(units=1, activation='sigmoid') ]) model.add(Dense(20, activation='softmax')) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val)) # 保存模型 model.save('my_model.h5') from sklearn.metrics import confusion_matrix, roc_curve, auc import matplotlib.pyplot as plt # 对测试集进行预测 y_pred = model.predict(X_test) # 将预测结果转换为标签 y_pred_labels = (y_pred > 0.5).astype(int) from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels # 将多标签指示器转换成标签数组 y_test = unique_labels(y_test) y_pred_labels = unique_labels(y_pred_labels) # 计算混淆矩阵 cm = confusion_matrix(y_test, y_pred_labels) # 绘制混淆矩阵 plt.imshow(cm, cmap=plt.cm.Blues) plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], ['N','L','R','A','a','J','S','V','F','[','!',']','e','j','E','/','f','x','Q','|']) plt.yticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], ['N','L','R','A','a','J','S','V','F','[','!',']','e','j','E','/','f','x','Q','|']) plt.title('Confusion matrix') plt.colorbar() plt.show()之后怎么绘制ROC曲线

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类

最新推荐

recommend-type

Keras 中Leaky ReLU等高级激活函数的用法

主要介绍了Keras 中Leaky ReLU等高级激活函数的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

[小白系列]sigmoid和tanh激活函数的绘制(分开画,合起来画,总有一款适合你),逐行代码详解

第一种:分开来画 import matplotlib.pyplot as plt ... return (np.exp(x) - np.exp(-x))/(np.exp(x)+np.exp(-x)) x = np.linspace(-8,8) fig = plt.figure(figsize = (12,4)) ax1 = plt.subplot(12
recommend-type

新建文本文档.txt

新建文本文档
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、