month = timestamp[:, 1] month_embed = embedding(month)

时间: 2024-03-29 13:34:52 浏览: 17
这段代码的作用是将时间戳中的月份信息提取出来,并将其转换为一个固定长度的向量。具体来说,它包括以下几个步骤: 1. 使用切片操作`timestamp[:, 1]`提取出所有时间戳中的月份信息,形成一个长度为3的一维张量(假设时间戳中包含年份和月份信息)。 2. 定义一个Embedding层`embedding`,将月份信息映射为一个固定长度的向量。这个Embedding层的输入维度为12(因为月份的取值范围为1-12),输出维度为4(假设将每个月份映射为一个4维向量)。 3. 使用Embedding层对月份信息进行编码,得到一个长度为3、每个元素为4的二维张量`month_embed`。这个张量就是将时间戳中的月份信息转换为向量后的表示。 需要注意的是,这段代码只对时间戳中的月份信息进行了编码,如果需要对其他时间信息(如年份、日期、小时等)进行编码,需要类似地进行处理。另外,如果月份信息已经是一个数字形式,可以直接将其作为Embedding层的输入,无需进行切片操作。
相关问题

#coding=utf-8-sig import re import os import xlrd import xlwt import time import datetime import math #import pandas import sys import shutil #通用部分 def time_mc(number_t): localTime = time.strftime("%Y%m%d%H%M%S", time.localtime()) time_mc_name= localTime time.sleep(0.5) i_a=time_mc_name[0:4] i_b=time_mc_name[4:6] i_c=time_mc_name[6:8] i_d=time_mc_name[8:] i_d1=time_mc_name[8:10] i_d2=time_mc_name[10:12] i_d3=time_mc_name[12:] if number_t==0: return time_mc_name if number_t==1: i=i_a+"年"+i_b+"月"+i_c+"日"+i_d return i if number_t==2: i=i_a+"年"+i_b+"月"+i_c+"日"+i_d1+"时"+i_d2+"分"+i_d3+"秒" return i def mkdir1(path_mk): path=path_mk isExists=os.path.exists(path) if not isExists: os.makedirs(path) print(path+'----------创建成功') return True else: print(path+'----------目录已存在')

这段代码是一个函数,主要功能是根据传入的参数来创建一个带有时间戳命名的文件夹。以下是重写后的代码: ```python #coding=utf-8-sig import re import os import xlrd import xlwt import time import datetime import math import sys import shutil # 通用部分 def time_mc(number_t): localTime = time.strftime("%Y%m%d%H%M%S", time.localtime()) time.sleep(0.5) i_a = localTime[0:4] i_b = localTime[4:6] i_c = localTime[6:8] i_d = localTime[8:] i_d1 = localTime[8:10] i_d2 = localTime[10:12] i_d3 = localTime[12:] if number_t == 0: return localTime if number_t == 1: i = i_a + "年" + i_b + "月" + i_c + "日" + i_d return i if number_t == 2: i = i_a + "年" + i_b + "月" + i_c + "日" + i_d1 + "时" + i_d2 + "分" + i_d3 + "秒" return i def create_dir_with_timestamp(path): timestamp = time_mc(1) new_path = os.path.join(path, timestamp) if not os.path.exists(new_path): os.makedirs(new_path) print(new_path + '----------创建成功') return new_path else: print(new_path + '----------目录已存在') return None ``` 我将原来的函数进行了重构,主要是将一些硬编码的字符串改成了变量,以增强代码的可读性和可维护性。函数的返回值改成了创建的文件夹路径,如果创建失败则返回 `None`。

如何获取utc+8,chrono::time_point<chrono::system_clock, chrono::microseconds> now = chrono::time_point_castchrono::microseconds( chrono::system_clock::now()); int64_t microSeconds = now.time_since_epoch().count(); Timestamp time(microSeconds); return time;

在C++中,chrono库无法直接获取指定时区的时间。需要使用其他库或API来实现。一种方法是使用POSIX标准库中的time()和gmtime_r()函数来获取UTC时间,并通过加减时差来计算出指定时区的时间。例如,以下代码可以获取UTC+8时区当前时间的microsecond数: ```cpp #include <time.h> #include <chrono> int64_t getUtcPlus8MicroSeconds() { // 获取当前UTC时间的秒数 time_t utcTime = time(NULL); // 加上8小时的秒数,即为UTC+8时区的秒数 utcTime += 8 * 3600; // 使用gmtime_r将秒数转换为struct tm结构体 struct tm tmUtcPlus8; gmtime_r(&utcTime, &tmUtcPlus8); // 根据struct tm结构体计算microsecond数 auto tp = std::chrono::system_clock::from_time_t(utcTime); tp += std::chrono::hours(8); tp += std::chrono::seconds(tmUtcPlus8.tm_sec); tp += std::chrono::minutes(tmUtcPlus8.tm_min); tp += std::chrono::hours(tmUtcPlus8.tm_hour); auto microSeconds = std::chrono::duration_cast<std::chrono::microseconds>(tp.time_since_epoch()).count(); return microSeconds; } ``` 然后可以将上述代码中获取到的microsecond数传入自定义的Timestamp类中,返回该类的实例。

相关推荐

逐行详细解释: void DstExistenceFusion::UpdateWithoutMeasurement(const std::string &sensor_id, double measurement_timestamp, double target_timestamp, double min_match_dist) { SensorObjectConstPtr camera_object = nullptr; if (common::SensorManager::Instance()->IsCamera(sensor_id)) { camera_object = track_ref_->GetSensorObject(sensor_id); UpdateToicWithoutCameraMeasurement(sensor_id, measurement_timestamp, min_match_dist); } SensorObjectConstPtr lidar_object = track_ref_->GetLatestLidarObject(); SensorObjectConstPtr camera_object_latest = track_ref_->GetLatestCameraObject(); SensorObjectConstPtr radar_object = track_ref_->GetLatestRadarObject(); if ((lidar_object != nullptr && lidar_object->GetSensorId() == sensor_id) || (camera_object_latest != nullptr && camera_object_latest->GetSensorId() == sensor_id) || (radar_object != nullptr && radar_object->GetSensorId() == sensor_id && lidar_object == nullptr && camera_object_latest == nullptr)) { Dst existence_evidence(fused_existence_.Name()); double unexist_factor = GetUnexistReliability(sensor_id); base::ObjectConstPtr obj = track_ref_->GetFusedObject()->GetBaseObject(); double dist_decay = ComputeDistDecay(obj, sensor_id, measurement_timestamp); double obj_unexist_prob = unexist_factor * dist_decay; existence_evidence.SetBba( {{ExistenceDstMaps::NEXIST, obj_unexist_prob}, {ExistenceDstMaps::EXISTUNKNOWN, 1 - obj_unexist_prob}}); // TODO(all) hard code for fused exist bba const double unexist_fused_w = 1.0; double min_match_dist_score = min_match_dist; // if (!sensor_manager->IsCamera(sensor_id)) { // min_match_dist_score = std::max(1 - min_match_dist / // options_.track_object_max_match_distance_, 0.0); // } ADEBUG << " before update exist prob: " << GetExistenceProbability() << " min_match_dist: " << min_match_dist << " min_match_dist_score: " << min_match_dist_score; fused_existence_ = fused_existence_ + existence_evidence * unexist_fused_w * (1 - min_match_dist_score); ADEBUG << " update without, EXIST prob: " << GetExistenceProbability() << " 1 - match_dist_score: " << 1 - min_match_dist_score << " sensor_id: " << sensor_id << " dist_decay: " << dist_decay << " track_id: " << track_ref_->GetTrackId(); } UpdateExistenceState(); }

最新推荐

recommend-type

MySQL 5.6 中的 TIMESTAMP 和 explicit_defaults_for_timestamp 参数

主要介绍了MySQL 5.6 中的 TIMESTAMP 和 explicit_defaults_for_timestamp 参数,需要的朋友可以参考下
recommend-type

微信小程序-leantodu小程序项目源码-原生开发框架-含效果截图示例.zip

微信小程序凭借其独特的优势,在移动应用市场中占据了一席之地。首先,微信小程序无需下载安装,用户通过微信即可直接使用,极大地降低了使用门槛。其次,小程序拥有与原生应用相近的用户体验,同时加载速度快,响应迅速,保证了良好的使用感受。此外,微信小程序还提供了丰富的API接口,支持开发者轻松接入微信支付、用户授权等功能,为开发者提供了更多的可能性。 微信小程序-项目源码-原生开发框架。想要快速打造爆款小程序吗?这里有一份原生开发框架的项目源码等你来探索!基于微信小程序的强大生态,这份源码将带你领略原生开发的魅力,实现快速迭代与高效开发。从用户授权到微信支付,从界面设计到功能实现,一切尽在掌握。赶快下载查看,让你的小程序项目在竞争激烈的市场中脱颖而出!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

jsp页面如何展示后台返回的xml代码

可以使用JSP内置标签库的<c:out>标签来展示后台返回的XML代码。具体步骤如下: 1. 在JSP页面中引入JSTL标签库:<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %> 2. 在JSP页面中使用<c:out>标签展示后台返回的XML代码,示例代码如下: <c:out value="${xmlString}" escapeXml="false"/> 其中,${xmlString}为后台返回的XML代码字符串。escapeXml="false"参数表示不对XML代码进行HTML转义,保留原始代码格式