给定n种物品和一背包。物品i的重量是wi,体积是bi,其价值为vi,背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种
时间: 2023-05-31 22:20:48 浏览: 243
### 回答1:
题目中给出了n种物品和一个背包。其中物品i的重量是wi,体积是vi,价值是ai,背包的容量是c,容积是d。问如何选择装入背包中的物品,使得装入背包中的物品的总价值最大?在选择装入背包的物品时,对每种物品 i 只有两种选择,即装入背包或不装入背包,不能将物品 i 装入多次,也不能只装入部分物品 i。当装入的物品的总体积不超过背包的容积,总重量不超过背包的重量时,即可装入。
### 回答2:
背包问题是计算机算法中比较典型的问题。简单来说,背包问题就是在给定的n种物品和背包容量限制下,选择将哪些物品放入背包中,来最大化背包中物品的总价值。针对本题的具体要求,即每种物品只有两种选择,该问题可以使用01背包算法来解决。
01背包算法的核心思想是使用动态规划来计算最优解。首先,需要定义一个状态数组来记录每个阶段中背包中放入物品的情况。设dp[i][j][k]为在前i件物品中,重量不超过j且体积不超过k时的最大价值。则可以得到以下状态转移方程:
- 当物品i不放入背包中时,dp[i][j][k] = dp[i-1][j][k];
- 当物品i放入背包中时,dp[i][j][k] = dp[i-1][j-wi][k-bi] + vi;
需要注意的是,在进行状态转移时,需要满足j≥wi且k≥bi。
最后,通过遍历状态数组,可以得到背包中物品的最大总价值。具体的实现过程可以参考以下伪代码:
for i=1 to n do
for j=c downto wi do
for k=d downto bi do
dp[j][k] = max(dp[j][k], dp[j-wi][k-bi] + vi)
end for
end for
return dp[c][d]
总之,通过01背包算法来解决本题的关键是使用动态规划来计算最优解。对于每种物品,通过对比将其放入或不放入背包中所得到的最大价值,来更新状态数组。最终遍历状态数组,可以得到背包中物品的最大总价值。
### 回答3:
这是一道经典的0/1背包问题。对于每种物品,我们只有两种选择:要么装入背包,要么不装入。因此,我们可以使用动态规划来解决这个问题。
首先定义一个二维数组dp[i][j][k],表示在前i种物品中,容量不超过j,体积不超过k时的最大总价值。那么dp[i][j][k]可以分为两种情况:
①不选第i种物品,此时dp[i][j][k] = dp[i-1][j][k];
②选第i种物品,此时dp[i][j][k] = dp[i-1][j-wi][k-bi] + vi;
最终的结果就是dp[n][c][d],表示在前n种物品中,容量不超过c,体积不超过d时的最大总价值。
为了优化空间复杂度,可以使用滚动数组,将i这一维去掉。代码如下:
```
int dp[MAXN][MAXN];
for (int i = 1; i <= n; i++) {
for (int j = c; j >= 0; j--) {
for (int k = d; k >= 0; k--) {
if (j >= w[i] && k >= b[i]) {
dp[j][k] = max(dp[j][k], dp[j-w[i]][k-b[i]] + v[i]);
}
}
}
}
cout << dp[c][d];
```
时间复杂度为O(n * c * d),空间复杂度为O(c * d)。
阅读全文