使用python,生成一个随机网络,利用不同社团划分的算法,如:GN算法、Louvain算法、FN算法、标签传播算法,计算不同算法对应的模块度Q值
时间: 2023-11-10 22:08:35 浏览: 191
好的,我们可以使用Python中的networkx库来生成一个随机网络,并使用Python中的community库来进行社团划分。
首先,我们需要安装networkx和community库。可以使用以下命令进行安装:
```
pip install networkx
pip install python-louvain
```
接下来,我们可以使用networkx库生成一个随机网络,代码如下:
```python
import networkx as nx
import random
# 生成一个包含n个节点、m条边的随机图
n = 100 # 节点数
m = 200 # 边数
G = nx.gnm_random_graph(n, m)
```
然后,我们可以使用不同社团划分算法对这个随机网络进行社团划分,并计算对应的模块度Q值。下面是使用GN算法、Louvain算法、FN算法、标签传播算法的代码:
```python
import community
# GN算法
gn_partition = community.girvan_newman(G)
gn_communities = tuple(sorted(c) for c in next(gn_partition))
gn_Q = community.modularity(nx.Graph(G), gn_communities)
# Louvain算法
louvain_partition = community.best_partition(G)
louvain_communities = {}
for node, community_id in louvain_partition.items():
if community_id in louvain_communities:
louvain_communities[community_id].append(node)
else:
louvain_communities[community_id] = [node]
louvain_communities = tuple(sorted(c) for c in louvain_communities.values())
louvain_Q = community.modularity(G, louvain_partition)
# FN算法
fn_communities = community.asyn_fluidc(G, 10)
fn_Q = community.modularity(G, fn_communities)
# 标签传播算法
label_propagation_communities = list(nx.algorithms.community.label_propagation_communities(G))
label_propagation_Q = community.modularity(G, label_propagation_communities)
```
最后,我们可以输出每种算法对应的社团划分和模块度Q值:
```python
print("GN算法:")
print(f"社团划分:{gn_communities}")
print(f"模块度Q值:{gn_Q}")
print("Louvain算法:")
print(f"社团划分:{louvain_communities}")
print(f"模块度Q值:{louvain_Q}")
print("FN算法:")
print(f"社团划分:{fn_communities}")
print(f"模块度Q值:{fn_Q}")
print("标签传播算法:")
print(f"社团划分:{label_propagation_communities}")
print(f"模块度Q值:{label_propagation_Q}")
```
完整代码如下:
```python
import networkx as nx
import community
# 生成一个包含n个节点、m条边的随机图
n = 100 # 节点数
m = 200 # 边数
G = nx.gnm_random_graph(n, m)
# GN算法
gn_partition = community.girvan_newman(G)
gn_communities = tuple(sorted(c) for c in next(gn_partition))
gn_Q = community.modularity(nx.Graph(G), gn_communities)
# Louvain算法
louvain_partition = community.best_partition(G)
louvain_communities = {}
for node, community_id in louvain_partition.items():
if community_id in louvain_communities:
louvain_communities[community_id].append(node)
else:
louvain_communities[community_id] = [node]
louvain_communities = tuple(sorted(c) for c in louvain_communities.values())
louvain_Q = community.modularity(G, louvain_partition)
# FN算法
fn_communities = community.asyn_fluidc(G, 10)
fn_Q = community.modularity(G, fn_communities)
# 标签传播算法
label_propagation_communities = list(nx.algorithms.community.label_propagation_communities(G))
label_propagation_Q = community.modularity(G, label_propagation_communities)
# 输出结果
print("GN算法:")
print(f"社团划分:{gn_communities}")
print(f"模块度Q值:{gn_Q}")
print("Louvain算法:")
print(f"社团划分:{louvain_communities}")
print(f"模块度Q值:{louvain_Q}")
print("FN算法:")
print(f"社团划分:{fn_communities}")
print(f"模块度Q值:{fn_Q}")
print("标签传播算法:")
print(f"社团划分:{label_propagation_communities}")
print(f"模块度Q值:{label_propagation_Q}")
```
阅读全文