tensorflow实现TCN
时间: 2023-07-24 15:25:00 浏览: 183
TextCNN的TensorFlow实现
以下是使用 TensorFlow 实现 TCN 的简单代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, Activation, Add, LayerNormalization
class TemporalBlock(tf.keras.layers.Layer):
def __init__(self, dilation_rate, nb_filters, kernel_size, padding, dropout_rate=0.0):
super(TemporalBlock, self).__init__()
self.conv1 = Conv1D(filters=nb_filters, kernel_size=kernel_size,
dilation_rate=dilation_rate, padding=padding)
self.conv2 = Conv1D(filters=nb_filters, kernel_size=kernel_size,
dilation_rate=dilation_rate, padding=padding)
self.dropout = tf.keras.layers.Dropout(dropout_rate)
self.norm = LayerNormalization()
def call(self, inputs, training=None):
x = inputs
x = self.conv1(x)
x = self.norm(x)
x = Activation('relu')(x)
x = self.dropout(x, training=training)
x = self.conv2(x)
x = self.norm(x)
x = Activation('relu')(x)
x = self.dropout(x, training=training)
return Add()([x, inputs])
class TemporalConvNet(tf.keras.layers.Layer):
def __init__(self, num_channels, kernel_size=2, dropout=0.0):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = 1 if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers.append(TemporalBlock(dilation_size, out_channels, kernel_size, 'causal', dropout_rate=dropout))
self.network = tf.keras.Sequential(layers)
def call(self, inputs, training=None):
return self.network(inputs)
# 定义 TCN 模型
def tcn_model(input_shape, num_channels, kernel_size=2, dropout=0.0):
inputs = tf.keras.layers.Input(shape=input_shape)
x = TemporalConvNet(num_channels, kernel_size=kernel_size, dropout=dropout)(inputs)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
return model
```
其中,TemporalBlock 是 TCN 模型的基本单元,包括两个卷积层、标准化层、激活函数和 dropout 层。TemporalConvNet 由多个 TemporalBlock 组成。tcn_model 定义了整个 TCN 模型的结构,包括输入层、TemporalConvNet 层和输出层。可以根据需要调整参数,如 num_channels 控制通道数,kernel_size 控制卷积核大小,dropout 控制 dropout 比例等。
阅读全文