请用python编写在tensorflow框架下的tcn与注意力机制融合进行预测回归的代码
时间: 2023-02-23 19:25:29 浏览: 122
ECANet注意力机制实现数据预测附Python源代码.zip
下面是一个完整的代码实现,使用了 TensorFlow 2.x 实现了一个简单的带有注意力机制的 Temporal Convolutional Network(TCN)进行回归预测:
```
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv1D, Dense, Dropout, Activation, Add, GlobalMaxPool1D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
class TCN(Model):
def __init__(self, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.conv1 = Conv1D(self.num_channels, self.kernel_size, padding='causal', activation='relu')
self.dropout1 = Dropout(self.dropout)
self.conv2 = Conv1D(self.num_channels, self.kernel_size, padding='causal', activation='relu')
self.dropout2 = Dropout(self.dropout)
self.attention = Conv1D(1, 1, activation='softmax', use_bias=False)
def call(self, inputs):
x = self.conv1(inputs)
x = self.dropout1(x)
x = self.conv2(x)
x = self.dropout2(x)
attention_weights = self.attention(x)
x = x * attention_weights
return tf.reduce_sum(x, axis=-1)
class TCNWithAttention(Model):
def __init__(self, num_channels, kernel_size, dropout, output_units):
super(TCNWithAttention, self).__init__()
self.tcn = TCN(num_channels, kernel_size, dropout)
self.fc = Dense(output_units, activation='linear')
def call(self, inputs):
x = self.tcn(inputs)
x = self.fc(x)
return x
def compile_and_fit(model, X_train, y_train, X_val, y_val, batch_size, epochs):
model.compile(loss='mean_squared_error', optimizer=Adam(lr=0.001))
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,
validation_data=(X_val, y_val), verbose=1)
return history
num_channels = 32
kernel_size = 2
dropout = 0.5
output_units = 1
inputs = Input(shape=(None, 1))
model = TCNWithAttention(num_channels, kernel_size, dropout,
阅读全文