请用python编写在tensorflow框架下的tcn与注意力机制融合的代码
时间: 2023-02-23 19:25:30 浏览: 249
Matlab实现灰狼优化算法GWO-TCN-Multihead-Attention多输入单输出回归预测算法研究.rar
下面是一份基于 TensorFlow 2.x 的代码,实现了一个 Time Convolutional Network(TCN)和 Attention Mechanism 的融合:
```python
import tensorflow as tf
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Conv1D, BatchNormalization, Activation, Attention, Dropout
class TCNAttention(Model):
def __init__(self, num_classes, input_shape=(None, 64), filters=64, kernel_size=3, dropout=0.5):
super(TCNAttention, self).__init__()
self.tcn = [Conv1D(filters, kernel_size, dilation_rate=2**i, padding='causal') for i in range(4)]
self.tcn = tf.keras.Sequential(self.tcn)
self.bn = BatchNormalization()
self.relu = Activation('relu')
self.attention = Attention()
self.fc = tf.keras.layers.Dense(num_classes)
self.dropout = Dropout(dropout)
def call(self, inputs):
x = self.tcn(inputs)
x = self.bn(x)
x = self.relu(x)
x = self.attention(x)
x = self.dropout(x)
x = self.fc(x)
return x
inputs = Input(shape=(None, 64))
model = TCNAttention(num_classes=10, input_shape=(None, 64))
outputs = model(inputs)
model.summary()
```
上面的代码定义了一个 `TCNAttention` 模型,其中有四个时间卷积层,分别使用不同的膨胀率,并使用了注意力机制。该模型的概况可以通过调用 `model.summary()` 查看。
阅读全文