tcn加注意力机制进行信用卡欺诈检测代码
时间: 2023-09-10 10:12:35 浏览: 155
以下是使用TCN和注意力机制进行信用卡欺诈检测的代码示例。
首先,我们需要导入所需的库和模块。
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout, SpatialDropout1D, Conv1D, MaxPooling1D, Flatten, \
concatenate, Attention
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import train_test_split
```
然后,我们读取数据集并将其拆分为训练集和测试集。
```python
data = pd.read_csv('creditcard.csv')
X = data.drop(['Class'], axis=1)
y = data['Class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
接下来,我们将数据转换为3D张量以适应TCN模型的输入形状。我们还将标准化输入以提高模型的性能。
```python
def prepare_data(X, y):
n_features = X.shape[1]
X = np.array(X).reshape((-1, n_features, 1))
y = np.array(y)
X_mean = X.mean(axis=0)
X_std = X.std(axis=0)
X = (X - X_mean) / X_std
return X, y
X_train, y_train = prepare_data(X_train, y_train)
X_test, y_test = prepare_data(X_test, y_test)
```
然后,我们定义TCN模型。这个模型由一系列卷积层和空间丢失层组成,最后通过一个全局最大池化层来提取特征。然后,我们使用注意力机制来加权这些特征,并将其馈入一个密集层进行最终分类。
```python
def build_model(n_features, kernel_size=3):
input_layer = Input(shape=(n_features, 1))
conv1 = Conv1D(filters=64, kernel_size=kernel_size, activation='relu')(input_layer)
conv2 = Conv1D(filters=64, kernel_size=kernel_size, activation='relu')(conv1)
dropout1 = SpatialDropout1D(rate=0.2)(conv2)
maxpool1 = MaxPooling1D(pool_size=2)(dropout1)
conv3 = Conv1D(filters=128, kernel_size=kernel_size, activation='relu')(maxpool1)
conv4 = Conv1D(filters=128, kernel_size=kernel_size, activation='relu')(conv3)
dropout2 = SpatialDropout1D(rate=0.2)(conv4)
maxpool2 = MaxPooling1D(pool_size=2)(dropout2)
conv5 = Conv1D(filters=256, kernel_size=kernel_size, activation='relu')(maxpool2)
conv6 = Conv1D(filters=256, kernel_size=kernel_size, activation='relu')(conv5)
dropout3 = SpatialDropout1D(rate=0.2)(conv6)
attention = Attention()([dropout3, dropout3])
flatten = Flatten()(attention)
dense1 = Dense(units=128, activation='relu')(flatten)
dense2 = Dense(units=1, activation='sigmoid')(dense1)
model = Model(inputs=input_layer, outputs=dense2)
return model
model = build_model(n_features=X_train.shape[1])
```
接下来,我们编译模型并训练它。
```python
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss', patience=3)
model.fit(X_train, y_train, epochs=10, batch_size=64, validation_split=0.2, callbacks=[early_stopping])
```
最后,我们评估模型的性能并输出分类报告和混淆矩阵。
```python
y_pred = model.predict(X_test)
y_pred = np.round(y_pred)
print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```
阅读全文