用bpso对numpy的红外光谱数据进行波段筛选的代码
时间: 2024-01-24 18:16:46 浏览: 72
基于近红外光谱的玉米秸秆木质纤维素含量快速检测方法研究 matlab代码
以下是一个简单的用BP算法进行波段筛选的代码示例,可以参考一下:
```python
import numpy as np
import matplotlib.pyplot as plt
# 读取红外光谱数据
data = np.loadtxt('data.txt')
wavelength = data[:, 0]
spectrum = data[:, 1:]
# 定义BP算法相关参数
n_particles = 20 # 粒子数
n_iterations = 100 # 迭代次数
c1 = 2.0 # 学习因子1
c2 = 2.0 # 学习因子2
w = 0.7 # 惯性权重
# 定义目标函数
def objective_function(wavelength, spectrum, positions):
selected_bands = np.where(positions > 0)[0] # 选出被选中的波段
if len(selected_bands) == 0:
return np.inf
selected_spectrum = spectrum[:, selected_bands]
corr = np.corrcoef(selected_spectrum.T)
return np.sum(np.abs(corr))
# 初始化粒子群
positions = np.random.randint(0, 2, size=(n_particles, spectrum.shape[1]))
velocities = np.zeros_like(positions)
pbest_positions = positions.copy()
pbest_values = np.zeros(n_particles)
for i in range(n_particles):
pbest_values[i] = objective_function(wavelength, spectrum, pbest_positions[i])
gbest_position = pbest_positions[pbest_values.argmin()]
gbest_value = pbest_values.min()
# 迭代优化
for i in range(n_iterations):
# 更新速度和位置
r1 = np.random.rand(n_particles, spectrum.shape[1])
r2 = np.random.rand(n_particles, spectrum.shape[1])
velocities = w * velocities + c1 * r1 * (pbest_positions - positions) + c2 * r2 * (gbest_position - positions)
positions = np.where(np.random.rand(n_particles, spectrum.shape[1]) < 1 / (1 + np.exp(-velocities)), 1, 0)
# 更新粒子最优解和全局最优解
values = np.zeros(n_particles)
for j in range(n_particles):
values[j] = objective_function(wavelength, spectrum, positions[j])
if values[j] < pbest_values[j]:
pbest_positions[j] = positions[j].copy()
pbest_values[j] = values[j]
if values.min() < gbest_value:
gbest_position = positions[values.argmin()].copy()
gbest_value = values.min()
# 输出筛选结果
selected_bands = np.where(gbest_position > 0)[0]
selected_spectrum = spectrum[:, selected_bands]
print('Selected bands:', wavelength[selected_bands])
print('Correlation matrix:', np.corrcoef(selected_spectrum.T))
# 绘制筛选结果
fig, ax = plt.subplots()
ax.plot(wavelength, spectrum.mean(axis=1), label='Original spectrum')
ax.plot(wavelength[selected_bands], selected_spectrum.mean(axis=1), label='Selected spectrum')
ax.legend()
plt.show()
```
需要注意的是,该示例代码仅供参考,实际应用中可能需要根据具体问题进行适当调整和优化。例如,可以考虑增加惯性权重的变化、引入局部搜索等策略来提高算法的性能。
阅读全文